ANOVA: Equivalence of ANOVA and Regression

1. Review of ANOVA

The purpose of this presentation is to demonstrate the equivalence of ANOVA and regression in the case of one categorical predictor. The summary presentation on one-way ANOVA, linked below, examined miles per gallon (MPG) of vehicles from Europe, Japan, and North America. The data for this analysis are also linked below.

Summary Presentation: <u>https://www.bwgriffin.com/gsu/courses/edur8132/anova-01.htm</u> Data File: <u>http://www.bwgriffin.com/gsu/courses/edur8131/data/cars.sav</u>

Recall that a one-way ANOVA refers to the number of predictors, independent variables, not the number of categories in the predictor. So, a two-way ANOVA means there are two categorical predictors, a three-way ANOVA has three categorical predictors, etc.

Note: Show ANOVA in SPSS

Results from SPSS for a one-way ANOVA comparing mean mpg by vehicle origin are shown below.

ſ		Descriptive	Statistics	
	Dependent Variabl	e: Miles per G	Gallon	
I	Country of Origin	Mean	Std. Deviation	N
L	American	20.08	6.415	244
l	European	27.60	6.580	68
I	Japanese	30.45	6.090	79
L	Total	23.48	7.781	391
L				

Tests of Between-Subjects Effects

Dependent Variable: Miles per Gallon

Dependent variable	e. milee per ean					
	Type III Sum					Partial Eta
Source	of Squares	df	Mean Square	F	Sig.	Squared
Corrected Model	7817.309ª	2	3908.655	96.030	.000	.331
Intercept	194029.594	1	194029.594	4767.050	.000	.925
origin	7817.309	2	3908.655	96.030	.000	.331
Error	15792.466	388	40.702			
Total	239224.740	391				
Corrected Total	23609.775	390				
a. R Squared =	.331 (Adjusted F	Squared = .:	328)			

	Pairwise Comparisons										
Dependent Variable: Miles per Gallon											
		Mean Difference			95% Confidence Interval for Difference ^a						
(I) Country of Origin	(J) Country of Origin	(I-J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound					
American	European	-7.524*	.875	.000	-9.244	-5.804					
	Japanese	-10.372*	.826	.000	-11.996	-8.748					
European	American	7.524*	.875	.000	5.804	9.244					
	Japanese	-2.848*	1.055	.007	-4.923	773					
Japanese	American	10.372*	.826	.000	8.748	11.996					
	European	2.848*	1.055	.007	.773	4.923					
Based on estimated *. The mean differ	marginal means ence is significant at the	e .05 level.									
a. Adjustment for	multiple comparisons: L	east Significan	t Difference (equivalent to	no adjustments).						

The ANOVA shows a significant main effect for origin (F = 96.03, df = 2, p < .001) with mean mpg of 20.08 for American, 27.60 for European, and 30.45 for Japanese cars. Mean comparisons, with unadjusted confidence intervals (i.e., no Tukey, Bonferroni, or Scheffé adjustments for inflated Type 1 error rates), are presented in the pairwise comparisons table.

2. Regression Analysis of the MPG and Origin

As mentioned previously, both regression and ANOVA are mathematically equivalent, but they look different. Comparison of results between the two will help to show the similarity. Below in Table 1 are six cases of the 391 in the cars data file to show the indicator variable (dummy variable) coding used for the regression analysis.

Table 1: MPG	and Origin – Sample	of 6 records fro	om 391 cases	
MPG	Origin	American	European	Japanese
		Indicator	Indicator	Indicator
13	1 = American	1.00	.00	.00
15	1 = American	1.00	.00	.00
17	2 = European	.00	1.00	.00
20	2 = European	.00	1.00	.00
18	3 = Japanese	.00	.00	1.00
21	3 = Japanese	.00	.00	1.00

Table 1: MPG and Origin – Sample of 6 records from 391 cases

The regression model includes two indicator variables to represent the three categories of origin. The reference group are Japanese cars. The regression equation is

 $Y_i = b_0 + b_1 American_{1i} + b_2 European_{2i} + e_i$

where American (1 = American cars, 0 = others) and European (1 = European cars, 0 = others) are the indicator variables. Regression results from JASP are provided below.

Note: Show regression in JASP

(1)

		D3	A II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DMOE					
Model	R	R ²	Adjusted R ²	RMSE					
H。	0.00000000	0.000000000	0.000000000	7.780609559					
H1	0.575417038	0.331104768	0.327656854	6.379830101					
NOVA									
Model		Sum of Squares	df	Mean Square	F	р	_		
	Regression	7817.309131369	2	3908.654565684	96.030472105	< .001			
H1	Regression	7017.303131303	-	3300.034303004	00.000112100				
	Residual Total	15792.466060447 23609.775191816	388 390	40.702232115		0.001			
	Residual Total	15792.466060447	388 390	40.702232115					
	Residual Total ntercept model is or	15792.466060447 23609.775191816	388 390	40.702232115			-		
Vote. The i	Residual Total ntercept model is or	15792.466060447 23609.775191816	388 390	40.702232115			_	95%	5 CI
<i>lote.</i> The i	Residual Total ntercept model is or	15792.466060447 23609.775191816	388 390 ngful information	40.702232115			p	95% Lower	6 CI Upper
lote. The i	Residual Total ntercept model is or	15792.466060447 23609.775191816 mitted, as no meanir	388 390 ngful information I Standard E	40.702232115 In can be shown.			p <.001		
lote. The in oefficients Model	Residual Total ntercept model is or	15792.466060447 23609.775191816 mitted, as no meanin Unstandardized	388 390 ngful information I Standard E 0 0.393482	40.702232115 In can be shown.	ja t	3	-	Lower	Upper
Vote. The in Coefficients Model Ho	Residual Total ntercept model is on s	15792.466060447 23609.775191816 mitted, as no meanin Unstandardized 23.482864450 30.450632911	388 390 ngful information I Standard E 0 0.393482 0.717786	40.702232115 In can be shown. Error Standardize 338 966	d≈ t 59.679589543	3	< .001	Lower 22.709252466	Upper 24.256476434

3. ANOVA: Linear Model Representations

Like regression, the ANOVA model can be displayed symbolically in linear equation form, as shown below.

 $Y_{ij} = \mu + \alpha_j + \varepsilon_{ij}$

where

 Y_{ij} = is mpg for car i in origin j,

 $\mu\,$ = grand mean across all cars and origins in the sample,

 α_{j} = the mean difference from $\mu,$ or effect, for origin j, and

 ε_{ij} = is the error term, or how far each mpg deviates from $\mu + \alpha_j$. (Glass & Hopkins, 1984)

The origin factor is tested with an F-test shown in the ANOVA summary table.

Source	SS	df	MS	F
	(Sums of	(Degrees of	(Mean Square,	(F-ratio)
	Squares)	Freedom)	i.e., variance)	
Between (group, regression)	SSb	df between	MSb = SSb/df b	MSb/df b
Within (error, residual)	SSw	df within	MSw = SSw/df w	
Total	SSt	df total	SSt/df t =	
			DV variance	

4. Comparison between ANOVA and Regressions

Below are screenshots showing various comparisons between ANOVA and regression.

Model Fit and F-ratio Components

- Same R² (.331) and adjusted R² (.328) values;
- same SS for model, origin factor, error, and total;
- same degrees of freedom;
- same mean squared values; and
- same model F ratios (96.03) and p-values.

SPSS ANOVA

Dependent Variabl	e: Miles per Gall	on				
	Type III Sum					Partial Eta
Source	of Squares	df	Mean Square	F	Sig.	Squared
Corrected Model	7817.309ª	2	3908.655	96.030	.000	.331
Intercept	194029.594	1	194029.594	4767.050	.000	.925
origin	7817.309	2	3908.655	96.030	.000	.331
Error	15792.466	388	40.702			
Total	239224.740	391				
Corrected Total	23609.775	390				
a. R Squared =	.331 (Adjusted R	Squared = .	328)			

JASP Regression

Model	R	R²	Adjusted R ²	RMSE		
H。	0.000000000	0.000000000	0.000000000	7.780609559		
H	0.575417038	0.331104768	0.327656854	6.379830101		
		Sum of Squares	df	Mean Square	F	
Model		Sum of Squares	df	Mean Square	F	p
	Regression	Sum of Squares 7817.309131369		Mean Square 3908.654565684	F 96.030472105	p < .001
	Regression Residual					

Mean Comparisons

- Same mean differences for
- (a) American vs. Japanese = -10.372;
- (b) European vs. Japanese = -2.847;
- (c) American vs. European = -7.524; and
- same standard errors and confidence intervals (unadjusted for inflation of Type 1 error).

SPSS ANOVA Mean Comparisons

		Mean Difference			95% Confider Differ	nce Interval for rence ^a
(I) Country of Origin	(J) Country of Origin	(I-J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound
American	European	-7.524*	.875	.000	-9.244	-5.804
	Japanese	-10.372*	.826	.000	-11.996	-8.748
European	American	7.524*	.875	.000	5.804	9.244
	Japanese	-2.848*	1.055	.007	-4.923	773
Japanese	American	10.372*	.826	.000	8.748	11.996
	European	2.848*	1.055	.007	.773	4.923
Based on estimated	marginal means					
*. The mean differ	ence is significant at the	.05 level.				

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

JASP Regression

							95%	CI
Model		Unstandardized	Standard Error	Standardizedª	t	р	Lower	Upper
H₀	(Intercept)	23.482864450	0.393482338		59.679589543	< .001	22.709252466	24.256476434
H1	(Intercept)	30.450632911	0.717786966		42.422939353	< .001	29.039394199	31.861871624
	origin (European)	-2.847691735	1.055357932		-2.698318408	0.007273416	-4.922627671	-0.772755799
	origin (American)	-10.371944387	0.825851412		-12.559092636	< .001	-11.995648270	-8.748240504

JASP Regression: American vs. European

							95%	6 CI
Model		Unstandardized	Standard Error	Standardizedª	t	р	Lower	Upper
H₀	(Intercept)	23.482864450	0.393482338		59.679589543	< .001	22.709252466	24.256476434
H	(Intercept)	27.602941176	0.773668041		35.678016578	< .001	26.081834857	29.124047496
	origin (American)	-7.524252652	0.874856939		-8.600552064	< .001	-9.244306148	-5.804199155
	origin (Japanese)	2.847691735	1.055357932		2.698318408	0.007273416	0.772755799	4.922627671
Standard	ized coefficients can o	only be computed for	continuous predicte	ors.				

As the above comparisons show, ANOVA and regression produce the same inferential tests, same mean comparisons, same standard errors, and the same confidence intervals for mean differences.

The primary difference between the two is that regression provides a prediction equation that both describes the nature of the mean differences and allows one to predict group means for mpg. ANOVA also has a linear model, but it typically is not shown in research reports or often emphasized in reports of ANOVA.