Project 3: Design a Questionnaire

Your Task

Design a questionnaire to measure a psychological construct of your choice. Many questionnaires exist already that psychologists have tried to use to measure dimensions of people’s personality (or traits). You’ve already come across some example in the first laboratory report that you did this year (you used questionnaire measures of spider phobia, trait worry, trait anxiety and disgust sensitivity). The basic idea of this lab class is to get you to think about how we measure personality traits and to get used to using factor analysis and reliability analysis to look at questionnaires. You can choose any psychological construct you like, but it should be something that differs in some way from existing measures (so don’t steal someone else’s questionnaire and pretend you designed it!) — or you can try to improve upon a measure (e.g. do you think you could design a better measure of disgust sensitivity than the one you used last term?).

A few ideas of constructs you could choose (to help you get the general gist):

- **Empathy**: can you design a questionnaire that measures the degree to which people can ‘put themselves into someone else’s shoes’?
- **Exam Anxiety**: For a similar project in my second year as an undergraduate I designed a questionnaire to measure different aspects of exam anxiety (The Exam Anxiety Questionnaire, or TEAQ).
- **Greediness**: Are there different components to greediness? A questionnaire to measure this construct might consider different aspects of greediness such as financial greed, greed with food etc.
- **Nosiness**: Can you measure how nosy a person is?
- **Gossip**: can you measure whether someone is a gossip?
- **Helpfulness**: Are some people helpful and others unhelpful? You could design a questionnaire to try to discriminate those that help from those that don’t.

What Makes a Good Questionnaire?

As a rule of thumb, never to attempt to design a questionnaire! A questionnaire is very easy to design, but a good questionnaire is virtually impossible to design. The point is that it takes a long to construct a questionnaire with no guarantees that the end result will be of any use to anyone.

A good questionnaire must have three things:

- **Validity**
- **Reliability**
- **Discrimination**

Discrimination

Before talking about validity and reliability, we should talk about discrimination, which is really an issue of item selection. Discrimination simply means that people with different scores on a questionnaire, should differ in the construct of interest to you. For example, a questionnaire measuring social phobia should discriminate between people with social phobia and people
without it (i.e., people in the different groups should score differently). There are three corollaries to consider:

1. People with the same score should be equal to each other along the measured construct.
2. People with different scores should be different to each other along the measured construct.
3. The degree of difference between people \propto the difference in scores.

This is all pretty self-evident really so what's the fuss about? Well, let's take a really simple example of a 3-item questionnaire measuring sociability. Imagine we administered this questionnaire to two people: Jane and Katie. Their responses are shown in Figure 1.

<table>
<thead>
<tr>
<th>Jane</th>
<th>Katie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I like going to parties</td>
<td>1. I like going to parties</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2. I often go to the Pub</td>
<td>2. I often go to the Pub</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3. I Really enjoy meeting people</td>
<td>3. I Really enjoy meeting people</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 1

Jane responded yes to items 1 and 3 but no to item 2. If we score a yes with the value 1 and a no with a 0, then we can calculate a total score of 2. Katie on the other hand answers yes to items 1 and 2 but no to item 3. Using the same scoring system her score is also 2. Therefore, numerically you have identical answers (i.e., both Jane and Katie score 2 on this questionnaire); therefore, these two people should be comparable in their sociability — are they?

The answer is not necessarily. It seems that Katie likes to go to parties and the pub but doesn't enjoy meeting people in general, whereas, Jane enjoys parties and meeting people but doesn't enjoy the pub. It seems that Katie likes social situations involving alcohol (e.g., the pub and parties) but Jane likes socialising in general, but can't tolerate cigarette smoke (such as you might get in a pub). In many sense, therefore, these people are very different because our questions are contaminated by other factors (i.e., attitudes to alcohol or smoky environments). A good questionnaire should be designed such that people with identical numerical scores are identical in the construct being measured — and that's not as easy to achieve as you might think!

A second related point is score differences. Imagine you take scores on the Spider Phobia Questionnaire (see last term's handouts for Project 1). Imagine you have three participants who do the questionnaire and get the following scores:

Andy: 30

Graham: 15

Dan: 10

Andy scores 30 on the SPQ (very spider phobic), Graham scores 15 (moderately phobic) and Dan scores 10 (not very phobic at all). Does this mean that Dan and Graham are more similar in their spider phobia than Graham and Andy? In theory this should be the case because
Graham’s score is more similar to Dan’s (difference = 5) than it is to Andy’s (difference = 15). In addition, is it the case that Andy is three times more phobic of spiders than Dan is? Is he twice as phobic as Graham? Again, his scores suggest that he should be. The point is that you can’t guarantee in advance that differences in score are going to be comparable, yet a questionnaire needs to be constructed such that the difference in score is proportional to the difference between people.

Validity

Items on your questionnaire must measure something and a good questionnaire measures what you designed it to measure (this is called validity). So, Validity basically means ‘measuring what you think you’re measuring’. So, an anxiety measure that actually measures assertiveness is not valid, however, a materialism scale that does actually measure materialism is valid. Validity is a difficult thing to assess and it can take many forms:

1. Content validity: Items on a questionnaire must relate to the construct being measured. For example, a questionnaire measuring Intrusive Thoughts is pretty useless if it contains items relating to statistical ability. Content validity is really how representative your questions are — the sampling adequacy of items. This is achieved when items are first selected: don’t include items that are blatantly very similar to other items, and ensure that questions cover the full range of the construct.

2. Criterion Validity: This is basically whether the questionnaire is measuring what it claims to measure. In an ideal world, you could assess this by relating scores on each item to real world observations (e.g. comparing scores on sociability items with the number of times a person actually goes out to socialise). This is often impractical and so there are other techniques such as (1) use the questionnaire in a variety of situations and seeing how predictive it is; (2) see how well it correlates with other known measures of your construct (i.e. sociable people might be expected to score highly on extraversion scales); and (3) there are statistical techniques such as the Item Validity Index (IVI). Testing criterion validity is beyond the scope of your project, but be aware of what it is and make sure you select ‘sensible’ items.

3. Factorial Validity: This validity basically refers to whether the factor structure of the questionnaire makes intuitive sense. As such, factorial validity is assessed through factor analysis. When you have your final set of items you can conduct a factor analysis on the data (see your Handout on Factor Analysis or Field, 2000 Chapter 11). Factor analysis takes your correlated questions and recodes them into uncorrelated, underlying variables called factors (an example might be recoding the variables Height, chest size, shoulder width, and weight into an underlying variable called ‘Build’). As another example, to assess success in this course we might measure attentiveness in seminars; the amount of notes taken in seminars, and the number of questions asked during seminars — all of these variables may relate to an underlying trait such as ‘motivation to succeed’. We’ve already learnt how to do factor analysis on SPSS and this analysis produces a table of items and their correlation, or loading, with each factor. A factor is composed of items that correlate highly with it. Factorial validity can be seen from whether the items tied onto factors make intuitive sense or not. Basically, if your items cluster into meaningful groups then you can infer factorial validity.

Validity is a necessary but not sufficient condition of a questionnaire.

Reliability

A questionnaire must not only be valid, but also reliable. Reliability is basically the ability of the questionnaire to produce the same results under the same conditions. To be reliable the questionnaire must first be valid. Clearly the easiest way to assess reliability is to test the same group of people twice: if the questionnaire is reliable you’d expect each person’s scores to be the same at both points in time. So, scores on the questionnaire should correlate perfectly (or very nearly!). However, in reality, is we did test the same people twice then we’d expect some practice effects and confounding effects (people might remember their responses
from last time). Also this method is not very useful for questionnaires purporting to measure something that we would expect to change (such as depressed mood or anxiety). These problems can be overcome using the alternate form method in which two comparable questionnaires are devised and compared. Needless to say this is a rather time-consuming way to ensure reliability and fortunately there are statistical methods to make life much easier.

The simplest statistical technique is the split-half method. This method randomly splits the questionnaire items into two groups. A score for each subject is then calculated based on each half of the scale. If a scale is very reliable we’d expect a person’s score to be the same on one half of the scale as the other, and so the two halves should correlate perfectly. The correlation between the two halves is the statistic computed in the split half method, large correlations being a sign of reliability1. The problem with this method is that there are a number of ways in which a set of data can be split into two and so the results might be a result of the way in which the data were split. To overcome this problem, Cronbach suggested splitting the data in two in every conceivable way and computing the correlation coefficient for each split. The average of these values is known as Cronbach’s alpha, which is the most common measure of scale reliability. As a rough guide, a value of 0.8 is seen as an acceptable value for Cronbach’s alpha; values substantially lower indicate an unreliable scale.

How to Design your Questionnaire

Step 1: Choose a Construct

First you need to decide on what you would like to measure. Once you have done this use PsychLit and the Web of Science (http://wos.mimas.ac.uk) to do a basic search for some information on this topic. I don’t expect you to search through reams of material, but just get some basic background on the construct you’re testing and how it might relate to psychologically important things. For example, if you looked at Empathy, this is seen as an important component of Carl Roger’s client-centred therapy, therefore, having the personality trait of empathy might be useful if you were to become a Rogerian therapist. It follows then that having a questionnaire to measure this trait might be useful for selection purposes on Rogerian therapy training courses. So, basically you need to set some kind of context to why the construct is important — this information will form the basis of your introduction.

Step 2: Decide on a Response Scale

A fundamental issue is how you want respondents to answer questions. You could choose to have:

- **Yes/No or Yes/No/Don’t Know scales:** This forces people to give one answer or another even though they might feel that they are neither a yes nor no. Also, imagine you were measuring Intrusive Thoughts and you had an item ‘I think about killing children’. Chances are everyone would respond no to that statement (even if they did have those thoughts) because it is a very undesirable thing to admit. Therefore, all this item is doing is subtracting a value to everybody’s score — it tells you nothing meaningful, it is just noise in the data. This scenario can also occur when you have a rating scale with a don’t know response (because people just cannot make up their minds and opt for the neutral response). It is which is why it is sometimes nice to have questionnaires with a neutral point to help you identify which things people really have no feeling about. Without this midpoint you are simply making people go one way or the other which is comparable to balancing a coin on its edge and seeing which side up it lands when it falls. Basically, when forced 50% will choose one option while 50% will choose the opposite — this is just noise in your data.

1 In actual fact the correlation coefficient is adjusted to account for the smaller sample on which scores from the scale are based (remember that these scores are based on half of the items on the scale).
• **Likert Scale**: This is the standard Agree-Disagree ordinal categories response. It comes in many forms:

 - **3-point**: Agree⇒Neither Agree nor Disagree⇒Disagree

 - **5-point**: Agree⇒Midpoint⇒Neither Agree nor Disagree⇒Midpoint⇒Disagree

 - **7-point**: Agree⇒2 Points⇒Neither Agree nor Disagree⇒2 Points⇒Disagree

 Questions should encourage respondents to use all points of the scale. So, ideally the statistical distribution of responses to a single item should be normal with a mean that lies at the centre of the scale (so on a 5-point Likert scale the mean on a given question should be 3). The range of scores should also cover all possible responses.

Step 3: Generate Your Items

Once you’ve found a construct to measure and decided on the type of response scale you’re going to use, the next task is to generate items. I want you to restrict your questionnaire to around 30 items (20 minimum). The best way to generate items is to ‘brainstorm’ a small sample of people. This involves getting people to list as many facets of your construct as possible. For example, if you devised a questionnaire on exam anxiety, you might ask a number of students (20 or so) from a variety of courses (arts and science), years (first, second and final) and even institutions (friends at other universities) to list (on a piece of paper) as many things about exams as possible that make them anxious. It is good if you can include people within this sample that you think might at the extremes of your construct (e.g. select a few people that get very anxious about exams and some who are very calm). This enables you to get items that span the entire spectrum of the construct that you want to measure.

This will give you a pool of items to inspire questions. Rephrase your sample’s suggestions in a way that fits the rating scale you’ve chosen and then eliminate any questions that are, basically the same. You should hopefully begin with a pool of say 50-60 questions that you can reduce to about 30 by eliminating obviously similar questions.

Things to Consider:

1. **Wording of Questions**: The way in which questions are phrased can bias the answers that people give; For example, Gaskell, Wright & O’Muircheartaigh (1993) report several studies in which subtle changes in the wording of survey questions can radically affect people’s responses. Gaskell *et al.*’s article is a very readable and useful summary of this work and their conclusions might be useful to you when thinking about how to phrase your questions.

2. **Response Bias**: This is the tendency of respondents to give the same answer to every question. Try to reverse-phrase a few items to avoid response bias (and remember to score these items in reverse when you enter the data into SPSS).

Step 4: Collect the Data

Once you’ve written your questions, randomise their order and produce your questionnaire. This is the questionnaire that you’re going test. Photocopy the questionnaire and administer it to as many people as possible (one benefit of making these questionnaires short is it minimises the time taken to complete them!). You should aim for 50-100 respondents, but the more you get the better your analysis (which is why I suggest working in slightly bigger groups to make data collection easier).

Step 5: Analysis

Enter the data into SPSS by having each question represented by a column in SPSS. Translate your response scale into numbers (i.e. 5 point Likert might be 1 = completely disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree, 5 = completely agree). Reverse phrased items should be scored in reverse too!
What we’re trying to do with this analysis is to first eliminate any items on the questionnaire that aren’t useful. So, we’re trying to reduce our 30 items down further before we run our factor analysis. We can do this by looking at descriptive statistics, and also correlations between questions.

Descriptive Statistics

The first thing to look at is the statistical distribution of item scores. This alone will enable you to throw out many redundant items.

Therefore, the first thing to do when piloting a questionnaire is descriptive statistics on the questionnaire items. This is easily done in SPSS (see your introductory handout from last term or Field, 2000 Chapter 2). We’re on the look out for:

1. **Range**: Any item that has a limited range (all the points of the scale have not been used).

2. **Skew**: I mentioned above that ideally each question should elicit a normally distributed set of responses across subjects (each items mean should be at the centre of the scale and there should be no skew). To check for items that produce skewed data, look for the skewness and SE skew in your SPSS output. We can divide the skewness by its standard error (SE skew) to form a z-score (see Field, 2000, p. 41 or download my first year handout on Exploratory Data Analysis from http://www.cogs.susx.ac.uk/users/andyf follow the link to teaching materials and then first year). Basically, if you divide the skew by its standard error and the absolute value is greater than 1.96 then the skew is significant. Eliminate items that are significantly skewed.

3. **Standard Deviation**: Related to the range and skew of the distribution, items with high or low standard deviations may cause problems so be wary of high and low values for the SD.

These are your first steps. Basically if any of these rules are violated then your items become non-comparable (in terms of the factor analysis) which makes the questionnaire pretty meaningless!!

Correlations

All of your items should inter-correlate at a significant level if they are measuring aspects of the same thing. If any items do not correlate at a 5% or 1% level of significance then exclude them. You can get a table of inter-correlations from SPSS (see Field, 2000, chapter 3 or download my first year handout on correlations from http://www.cogs.susx.ac.uk/users/andyf follow the link to teaching materials and then first year). Your factor analysis handout and lecture give more detail on screening correlation coefficients for items that correlate with few others or correlate too highly with other items (multicollinearity and singularity).

Factor Analysis

When you’ve eliminated any items that have distributional problems or do not correlate with each other, then run your factor analysis on the remaining items and try to interpret the resulting factor structure. Field (2000) chapter 11 details the process of factor analysis and you have a free handout based on that chapter too.

What you should do is examine the factor structure and decide:

1. Which factors to retain
2. Which items load onto those factors

2 Remember from first year that 1.96 is the cut-off value for significance of a z-score at $p < 0.05$ (two-tailed).
3. What your factors represent

4. If there are any items that don’t load highly onto any factors, they should be eliminated from future versions of the questionnaire (for our purposes you need only state that they are not useful items as you won’t have time to revise and re-test your questionnaires!).

Step 6: Assess the Questionnaire

Having looked at the factor structure, you need to check the reliability of your items and the questionnaire as a whole. We should run a reliability analysis on the questionnaire. I’ve prepared a separate handout explaining how this is done. There are two things to look at: (1) the Item Reliability Index (IRI), which is the correlation between the score on the item and the score on the test as a whole multiplied by the standard deviation of that item (called the corrected item-total correlation in SPSS). SPSS will do this corrected item-total correlation and we’d hope that these values would be significant for all items. Although we don’t get significance values as such we can look for correlations greater than about 0.3 (although the exact value depends on the sample size this is a good cut-off for the size of sample you’ll probably have). Any items having a correlations less than 0.3 should be excluded from the questionnaire. (2) Cronbach’s alpha, as we’ve seen, should be 0.8 or more and the deletion of an item should not affect this value too much (see the reliability analysis handout for more detail).

The End?

You should conclude by describing your factor structure and the reliability of the scale. Also say whether there are items that you would drop in a future questionnaire. In an ideal world we’d then generate new items to add to the retained items and start the whole process again, luckily for you you’re not expected to do this!

In your discussion, do talk about the application of your questionnaire (how useful it is, when and where it might be used, does it support an existing theory of the construct measured etc.).

The Write-Up

A good model of a write up of a questionnaire designed by the authors is in:

It’s in the library, and the university also has electronic access to this article through the psyArticles database. You don’t have to follow this to the letter it’s just an example of a write-up. There are plenty of others you can find for yourselves.

Introduction

The introduction will be much the same as any other laboratory report (see Field & Hole, 2003). You’ve chosen a construct to measure (let’s assume it’s ‘empathy’). Your introduction should address the following:

- What is empathy (theories etc.)?
- Why is it important to have a questionnaire measuring empathy? (Are there other measures? If so, why do we need another one - what are the problems with the other ones?).
You won't have any hypotheses as such to report at the end. (Unless, of course, theory predicts a certain number of factors – e.g. if you've measured personality and you've written about the 5 factor theory, then obviously you'd predict 5 factors to emerge from your questionnaire!)

Method

Participants: Same as any other lab report.

You don't really need a *materials* and *design* section.

Procedure: should be a detailed account of how you generated the items for your questionnaire. So, how did you initially generate items? How did you decide on a rating scale (and why)? Did you reverse the phrasing of any items? Did you start off with lots of items and then eliminate some before actually giving out the questionnaire? Then you need to describe how you gave out the final questionnaires and the conditions under which people completed them. If you did a pilot study (I'd be surprised if anyone has, but just in case) report it here also.

Results

You can split into three sub-sections (if you like):

1. Initial analysis: look at distributions of scores for each item and correlations between items. Did you exclude any items at this stage because of skewed distributions or whatever? Justify their exclusion.
2. Factor Analysis: describe the main factor analysis that you did on the remaining items (see the Carver & White paper for format).
3. Reliability analysis: report the reliability analysis (Cronbach's alpha, and comment on any items which adversely affect the reliability: item-total correlations, and alpha if item deleted statistics).

Discussion

For the vast majority of you, the discussion should focus on how valid and reliable the questionnaire is. It doesn't matter if your questionnaire is a complete pig's ear, provided you can comments on the fact it's a pig's ear and suggest reasons why it's a pig's ear (preferably with some scientific justification!). Don't re-report stats in the discussion but comment on:

1. The good things about the questionnaire
2. The bad bits of the questionnaire (the opposite of the above) (in both of the above you're going to need to comment on things like: did it have factorial validity? were the distributions of items acceptable etc.?; did you have to eliminate lots of items? Was reliability acceptable? Were there any obvious problems with the format or rating scale you used etc?)
3. Future research: how would you validate this measure further (can you think of behavioural experiments you could use, or other measures you could compare it against - what would these things tell you?)
4. For some of you, if you've based the questionnaire on a theory (i.e. 5-factor model of personality) comment on the degree to which your questionnaire supports the theory. If it doesn't support the theory, can you find reason's why (is the theory wrong, or your questionnaire?): is there other research you can look to to explain your results.
FAQs

Some answers to the more popular questions emailed to me last year:

Q1. Just wondering if we have to put all our spss data output (all 39 pages...) in the appendix of the questionnaire lab report? If we do does it matter if they are full of scribbles and things?

A: Just put a condensed version of the output in, so don't put things like inverse correlation matrices, anti-image matrices and reproduced matrices because these are huge and waste paper. Just put important things like KMO, Total variance explained, Communalties, Component matrix, scree plot, rotated component matrix (or pattern & structure if you've done oblique rotation) and component correlation matrix (if oblique rotation was used). No, it doesn't matter if you've scribbled on it!

Don't put your data in.

Q2. For the questionnaire lab report do we need an abstract?

A. Yes.

Q3. You said to write up in the same format as Carver & White, and especially the table. Their table shows how they have done an analysis after the factor analysis we have done, are we meant to do one like that, and in that case, how do we do that?

A. Don't get too hung up on following Carver & White exactly ... it's just supposed to be a rough guide. You can search around and find other papers that report factor analyses in more detail than this one, it just happened to be the first one I could think of that used factor analysis!

Q4. Would it not be more suitable for us to include a couple of different tables, eg one with the factor loadings, one with descriptives, and one with the alphas?

A. That would be perfectly fine. You'll see other factor analyses that do indeed report descriptives for items, then a different table with factor loadings in, and then just report the alphas in the text. So, that would be perfectly fine.

Q5. Are we not supposed to report our KMO, Bartlett's, Total variance, Communalties, scree plot, and Alpha if item deleted? According to your instructions to follow the carver & White format we don't...

A. Well, you don't have to, in fact most written reports wouldn't report things like KMO unless it was a problem. However, I think it can be useful if you do (but don't worry if you haven't). The most important thing is to report things rather than go into detailed explanations of what they mean. Of the numerous lab reports I've marked I've noticed a lot of people tend to follow the format of my book and say things like 'the F-ratio is the ratio of systematic to unsystematic variance'. This is the sort of thing you need to explain in a stats textbook, but you don't need this in a lab report: you have to assume that your reader is sufficiently trained in stats to know what you're talking about.

So, you could say something like:

'Sample size was deemed good according to Hutcheson & Sofroniou's (1999) criteria, KMO = .73'.

But you shouldn't say things like:
'The KMO statistic represents the ratio of the squared correlation between variables to the squared partial correlation between variables. It varies between 0 and 1, and our value of .73 is close to 1 so we had an adequate sample'.

(In fact, anyone writing the above and showing it to me will send me into a spiral of deep depression and despair).

Also, if you're using a criterion then reference it. Again, good practice would be:

'The KMO statistic (0.73) was above Kaiser's criterion of 0.5 for an adequate sample (see Field, 2000)' or

'The KMO statistic (0.73) was above Kaiser's (1960) criterion of 0.5 for an adequate sample'

Bad practice would be:

'KMO was above 0.5 so we had a big enough sample'.

I also think you should comment on factor extraction and rotation. You need to say how many factors were extracted and whether this was appropriate (see the handout for Kaiser's criterion and scree plots etc.). If you use the scree plot to extract a different number of factors to the SPSS defaults (Kaiser's criterion) then say so, justify it, and refer to the scree plot (which should probably be in your appendix but it's not a heinous crime to put it in the results if you're using it to make decisions about factor extraction).

Communalities: don't report in detail, but you might want to report average communality in reference to Kaiser's criterion for extraction.

Alpha if item deleted: you don't need to report this unless there are items that you're excluding because they cause a large drop in alpha (in which case, just report in the text when you're explaining that you've dropped the item!).

Q6. Do I have to try out my Questionnaire on different groups of people?

Every year at least some people get the impression that instead of only designing and validating a questionnaire, they have got to try their questionnaire out on different groups of people, and then compare the groups. You don’t need to do this.

The idea behind the project is simply that you:

(1) Design a questionnaire
(2) Do a factor analysis on it
(3) Do a reliability analysis on it
(4) Use these analyses to comment on the quality of the questionnaire/individual items on the questionnaire.

You can, if you like, base the questionnaire on a theory (i.e. 5-factor theory of personality), design the questionnaire accordingly and see if the theory has factorial validity (i.e. do you get the 5 factors that the theory predicts?), but you shouldn’t be testing it out on different groups of people.

Q7. Do I put my SPSS output in the results section?

A. NO, NO, NO, NO, NO!!! Anyone found pasting SPSS tables into their results section will be strapped to a chair in my office and forced to listen to
me explaining the hand calculation of multivariate analysis of variance for hours on end
or some less severe torture such as being boiled in a cauldron of oil.

Useful References

