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Effect Size Estimates: Current Use, Calculations, and Interpretation
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Vanderbilt University

The Publication Manual of the American Psychological Association (American Psychological Associ-
ation, 2001, 2010) calls for the reporting of effect sizes and their confidence intervals. Estimates of effect
size are useful for determining the practical or theoretical importance of an effect, the relative contri-
butions of factors, and the power of an analysis. We surveyed articles published in 2009 and 2010 in the
Journal of Experimental Psychology: General, noting the statistical analyses reported and the associated
reporting of effect size estimates. Effect sizes were reported for fewer than half of the analyses; no article
reported a confidence interval for an effect size. The most often reported analysis was analysis of
variance, and almost half of these reports were not accompanied by effect sizes. Partial 1> was the most
commonly reported effect size estimate for analysis of variance. For ¢ tests, 2/3 of the articles did not
report an associated effect size estimate; Cohen’s d was the most often reported. We provide a
straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types
of data and to methods for calculating effect size confidence intervals and power analysis.

Keywords: effect size, eta squared, confidence intervals, statistical reporting, statistical interpretation

Experimental psychologists are accomplished at designing and
analyzing factorial experiments and at reporting inferential statis-
tics that identify significant effects. In addition to statistical sig-
nificance, most research reports describe the direction of an effect,
but it is also instructive to consider its size. Estimates of effect size
are useful for determining the practical or theoretical importance
of an effect, the relative contribution of different factors or the
same factor in different circumstances, and the power of an anal-
ysis. This article reports the use of effect size estimates in the 2009
and 2010 volumes of the Journal of Experimental Psychology:
General (JEP: General), comments briefly on their use, and offers
practical advice on choosing, calculating, and reporting effect size
estimates and their confidence intervals (CIs).

Effect size estimates have a long and somewhat interesting
history (for details, see Huberty, 2002), but the current attention to
them stems from Cohen’s work (e.g., Cohen, 1962, 1988, 1994)
championing the reporting of effect sizes. In response to Cohen
(1994) the American Psychological Association (APA) Board of
Scientific Affairs set up a task force that proposed guidelines for
statistical methods for psychology journals (Wilkinson & the APA
Task Force on Statistical Inference, 1999). These guidelines were
subsequently incorporated into the revised fifth edition of the
Publication Manual of the American Psychological Association
(APA, 2001; hereinafter APA Publication Manual) and were again
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included in the sixth edition (APA, 2010). Regarding effect sizes,
the sixth edition states,

For the reader to appreciate the magnitude or importance of a study’s
findings, it is almost always necessary to include some measure of
effect size in the Results section. Whenever possible, provide a
confidence interval for each effect size reported to indicate the pre-
cision of estimation of the effect size. (APA, 2010, p. 34)

Effect sizes allow researchers to move away from the simple
identification of statistical significance and toward a more gener-
ally interpretable, quantitative description of the size of an effect.
They provide a description of the size of observed effects that is
independent of the possibly misleading influences of sample size.
Studies with different sample sizes but the same basic descriptive
characteristics (e.g., distributions, means, standard deviations, CIs)
will differ in their statistical significance values but not in their
effect size estimates. Effect sizes describe the observed effects;
effects that are large but nonsignificant may suggest further re-
search with greater power, whereas effects that are trivially small
but nevertheless significant because of large sample sizes can warn
researchers against possibly overvaluing the observed effect.’
Effect sizes can also allow the comparison of effects in a single
study and across studies in either formal or informal meta-
analyses. When planning new research, previously observed effect
sizes can be used to calculate power and thereby estimate appro-
priate sample sizes. Cohen (1988), Keppel and Wickens (2004),
and most statistical textbooks provide guidance on calculating
power; a very brief, elementary guide appears in the Appendix
along with mention of planning sample sizes based on accuracy in

"It is rarely the case that experimental studies have the problem of too
many cases making trivial effects statistically significant, but some large-
scale surveys and other studies with very large sample sizes can have this
problem. For example, a correlation of .1, accounting for only 1% of the
variability, is statistically significant with a sample size of 272 (one tailed).
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parameter estimation (i.e., planning the size of the CIs; Cumming,
2012; Kelley & Rausch, 2006; Maxwell, Kelley, & Raush, 2008).

A brief note on the terminology used in this article may be
helpful. Effect sizes calculated to describe the data in a sample,
like any other descriptive statistic, also potentially estimate the
corresponding population parameter. Throughout this article, we
refer to the calculated effect size, which describes the sample and
estimates the population, as an effect size estimate. It is important
to remember that the estimates both describe the sample and
estimate the population and that some statistics, as we describe
later, provide better estimation of the population parameters than
do others.

The most basic and obvious estimate of effect size when con-
sidering whether two data sets differ is the difference between the
means; most articles report means, and the difference is easily
calculated. Some researchers argue that differences between the
means are generally sufficient and superior to other ways of
quantifying effect size (e.g., Baguley, 2009; Wilkinson & the APA
Task Force on Statistical Inference, 1999). The raw difference
between the means can provide a useful estimate of effect size
when the measures involved are meaningful ones, such as IQ or
reading age, assessed by a standard scale that is widely used.
Discussion of the effect would naturally focus on the raw differ-
ence, and it would be easy to compare the results with other
research using the same measure.

However, comparing means without considering the distribu-
tions from which the means were calculated can be seriously
misleading. If two studies (A and B) each have two conditions with
means of 100 and 108, it would be very misleading to conclude
that the effects in the two studies are the same. If the standard
deviations for the conditions in Study A were both two and in
Study B were both 80, then it is clear that the distributions for
Study A would have virtually no overlap, whereas those for Study
B would overlap substantially. Using Cohen’s U,, which we
describe later, we find that only 2% of the distributions for Study
A would overlap, given the standardized difference between the
means (d) of 4, but 92% of the distributions would overlap in
Study B because the standardized difference between these means
is d = 0.1. Significance tests make the difference between the two
studies quite clear. For the study with standard deviations of two,
a t test would find a two-tailed significant difference (p < .05)
with three participants per group, but 770 participants per group
would be needed to obtain a significant difference for the study
with standard deviations of 80. The consequence of the difference
in the size of the distributions is also obvious when considering the
CIs: With 50 samples in each study, Study A’s CI = *0.6,
whereas Study B’s CI = £22.2. These examples illustrate how
comparisons between means without considering the variability of
the data can conceal important properties of the effect. To address
this problem, standardized effect size calculations have been de-
veloped that consider variability as well as the differences between
means. Effect size calculations are addressed by a growing number
of specialized texts, including Cumming (2012), Ellis (2010),
Grissom and Kim (2005, 2011), and Rosenthal, Rosnow, and
Rubin (2000) as well as many general statistical texts.

When examining the difference between two conditions, effect
sizes based on standardized differences between the means are
commonly recommended. These include Cohen’s d, Hedges’s g,
and Glass’s d and A. When independent variables have more than

two levels or are continuous, effect size estimates usually describe
the proportion of variability accounted for by each independent
variable; they include eta squared (v, sometimes called R?),
partial eta squared (nﬁ), generalized eta squared (wg), associated
omega squared measures (w°, w;, 0g), and common correlational
measures, such as 2, R?, and Radjz. In addition, there are other less
frequently encountered statistics, such as epsilon squared (€7
Ezekiel, 1930) and various statistics devised by Cohen (1988),
including ¢, f, and f°. Finally, there are the effect size estimates
relevant to categorical data, such as phi (¢b), Cramér’s V (or ¢,),
Goodman—Kruskal’s lambda, and Cohen’s w (Cohen, 1988). The
plethora of possible effect size estimates may create confusion and
contribute to the lack of engagement with reporting and interpret-
ing effect sizes. Many of these statistics are conceptually, and even
algebraically, quite similar but have been developed as improve-
ments or to serve different types of data and different purposes.
The emergence of a consensus to use a few selected estimates
would probably be a useful simplification, as long as the choice
was driven by the genuine usefulness of those estimates and not
merely by their easy availability.

One important distinction to make among effect sizes is that
some statistics, such as m? and R?, describe the samples observed
but may overestimate the population parameters, whereas others,
such as w? and adjusted R?, attempt to estimate the variability in
the sampled population and, thus, in replications of the experiment.
These latter statistics are often recommended by statistical text-
books because they relate to the population and are less vulnerable
to inflation from chance factors. However, researchers very rarely
report these population estimates, perhaps because they tend to be
smaller than the sample statistics.

Although the APA Publication Manual has strongly advocated
the reporting of effect sizes for 10 years and many psychology
editors have done so for longer than that (e.g., Campbell, 1982;
Levant, 1992; Murphy, 1997), a glance through many journals
suggests that such reporting is inconsistent. Morris and Fritz
(2011) surveyed cognitive articles published in 2009; they found
that only two in five of these articles intentionally reported effect
sizes. Isabel Gautier, as the incoming editor of JEP: General,
asked us to conduct a similar survey of recent volumes of this
journal and to review the methods of calculating effect size esti-
mates.

Method

We reviewed articles published in the 2009 and 2010 volumes
of JEP: General, noting the statistical analyses, descriptive statis-
tics, and effect size estimates reported in each.

Results

Table 1 provides frequencies of the most commonly used sta-
tistical analyses for each year; corresponding percentages are il-
lustrated in Figure 1. Note that data are reported for each article,
not for each experiment, but the analyses were similar across
experiments in most articles. Analysis of variance (ANOVA) was
reported in most articles, 83% overall, followed by 7 tests, 66%
overall; these were often used together to locate the source of
effects in factorial designs. Overall, 58% of the articles reported at
least one measure of effect size (73% for 2009, 45% for 2010).
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Table 1
Numbers of Articles Reporting Commonly Used Statistical
Analyses

Year Articles ANOVA t test Correlation Regression
2009 33 27 23 14 8
2010 38 32 24 13 9
Overall 71 59 47 27 17

Note. Corresponding percentages are shown in Figure 1. ANOVA =
analysis of variance.

Different analyses are often associated with different estimates
of effect size; therefore, the use of specific effect size estimates is
reported within the context of the analysis conducted. Table 2
shows the effect size estimates used in conjunction with ANOVA
type analyses, including analysis of covariance. Overall, slightly
more than half of the articles reported a measure of effect size
associated with ANOVA at least once; ni was by far the most
frequently used, almost certainly because it is provided by SPSS.
Effect size estimates were rarely reported for further
ANOVA-related analyses, such as simple effects and post hoc and
planned comparisons. Table 3 summarizes the frequency of further
ANOVA-related analyses and the inclusion of effect size esti-
mates. Most articles did not report all components of the ANOVA;
only 10 of the 59 articles (five from each year) reported the mean
square error (MSE) terms and only 20 (12 for 2009 and 8 for 2010)
reported F ratios for all effects. When reporting ANOVA, articles
usually included descriptive statistics for the data, either in terms
of individual cells or marginals. At least some means associated
with ANOVA were reported in 93% of the articles (93% for 2009
and 94% for 2010); some measure of variability was less often
reported, appearing in only 80% of the articles (81% for 2009 and
78% for 2010).

When reporting ¢ tests, roughly one quarter of articles included
a measure of effect size; Cohen’s d was the most often used effect
size estimate. See Table 4 for numbers and percentages of effect
size estimates and descriptive statistics reported in association with
t tests. Descriptive statistics were less often provided than for
ANOVA; almost one quarter did not report a measure of central
tendency, and almost half failed to report the variability of the
data.

Neither intentional reporting of effect size estimates nor descrip-
tive statistics tended to accompany reports of correlations. Refer to
Table 5 for numbers and percentages of articles intentionally
reporting effect size estimates and descriptive statistics associated
with correlation analyses. Fewer than 10% of the articles reporting
correlations provided r or any other associated effect size estimate
beyond the correlation, and fewer than one quarter reported de-
scriptive statistics for the data. Although 7 is a useful estimate of
effect size, there is a difference between reporting it as a correla-
tion and treating it as an estimate of effect size; none of these
articles appeared to present it as an effect size estimate.

Various types of regression were also reported in 17 articles.
Most of these were very selective in terms of the statistics reported
from the analysis and in terms of descriptive statistics; there were
almost no reports of effect size. Table 6 shows numbers and
percentages of statistics reported in association with regression
analyses. Most articles did not report the F ratio or significance

value for the test, although most reported some statistics associated
with the predictors, such as the ¢ tests, the regression weights, the
partial correlations, or the odds ratios. We counted all reports of R?
as estimates of effect size, although most were not explicitly
presented as such.

A few nonparametric and frequency-based tests were also re-
ported; only one of these included a measure of effect size. These
reports also tended to neglect statistical summaries of the data.

Discussion

Our initial concern over the reporting of effect sizes was justi-
fied by our analysis. Across the 2 years studied, 42% of articles
reported no measure of effect size. Most of the articles counted as
including effect sizes reported them for only some of the analyzed
effects. Even where articles reported T]ﬁ for ANOVA analyses,
they often omitted effect size estimates for nonsignificant effects
and other comparisons. Fewer than a third of the articles reporting
t tests included associated effect size estimates to aid in interpret-
ing the results. On the positive side, reported effect sizes in the
JEP: General articles were clear with respect to which effect size
statistic was used. Our recent survey of cognitive articles (Morris
& Fritz, 2011) found articles in which effect sizes were wrongly
identified, and we have occasionally encountered articles that
report effect size figures without identifying which statistic was
used. As Vacha-Haase and Thompson (2004) observed, it is es-
sential to correctly identify which statistic is used: Reporting that
an effect size is .5 means something very different depending on
whether the statistic used is d, r, %, 02, »>, or others.

We observed almost no interpretation of the effect sizes that
were reported, despite APA’s direction to address the “theoretical,
clinical, or practical significance of the outcomes” (APA, 2010, p.
36). Clearly effect sizes are important in a clinical and practical
sense. Are they less relevant in a theoretical sense? If theories are
solely concerned with the statistical significance of effects and not
with their size, then perhaps there is no useful role for effect size
consideration in interpretation, but surely good theories are con-
cerned with substantive significance rather than merely statistical
significance. A theory that only predicts a difference (or relation-

90 +
» 80
i 70 - W 2009
80 02010
% 50
] 40 -
2 30
S 20|
1
0 - T T T
ANOVA t test Correlation Regression
Analyses observed
Figure 1. Percentage of published articles including each type of analy-

sis. Other types of analyses were also observed with lower frequencies,
including x* (18% for 2009 and 16% for 2010), nonparametric difference
tests (3% for 2009 and 11% for 2010), and Cronbach’s alpha (6% for 2009
and 11% for 2010); these were not accompanied by measures of effect size
and are not discussed here. Corresponding frequencies are shown in Table
1. ANOVA = analysis of variance.
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Table 2
Number (and Percentage) of Articles Reporting Effect Size Estimates Associated With ANOVA

Year Articles with ANOVA Any ES measure n? m; »? o) d
2009 27 18 (67) 1(6) 17 (94) 0 0 2(11)
2010 32 15 (47) 5(33) 9 (60) 1(7) 0 3 (20)
Overall 59 33 (56) 6 (18) 26 (79) 1(3) 0 5(15)

Note. Atrticles were included in the counts if the statistic was reported at least once. Percentages across measures sum to more than 100% because some
articles included more than one measure of effect size. ANOVA = analysis of variance; ES = effect size.

ship) but is not concerned with the size of that effect will be one
that is quite difficult to falsify and perhaps even more difficult to
apply.

It appears that effect sizes may be reported to meet the minimum
letter of the law, with little regard for the spirit of the law. The
preponderance of ni in these analyses and the sparsity of discus-
sion of reported effect sizes is consistent with a scenario wherein
people obtain n[z) values from their statistical software and report it
as required, but they give scant consideration to the implications of
the values obtained. Little appears to have changed in the 60 years
since Yates (1951) observed that an emphasis on statistical signif-
icance testing had two main negative consequences: Statisticians
develop significance tests for

problems ... of little or no practical importance [and] scientific
research workers . . . pay undue attention to the results of the tests of
significance they perform on their data, particularly data derived from
experiments, and too little to the estimates of the magnitude of the
effects they are investigating. (p. 32).

Many researchers may be cautious about engaging too deeply
with the effect size values that they calculate because, in contrast
to the use of inferential statistics, they have far less experience in
using the effect size estimates as an aspect of evaluating results
and providing guidance for future research. In part, this situation
may arise from the tendency to report nf,, which has limited
usefulness. The nﬁ statistic may be useful for cross-study compar-
isons with identical designs, but where designs differ, mg is
needed. Within a factorial study, nﬁ cannot properly be used to
compare effects; ~r|2 is needed. We describe each of these measures
and discuss the possible uses and interpretations of various effect
sizes in a later section of the article.

The fifth and sixth editions of the APA Publication Manual
recommend the inclusion of CIs for effect size estimates, but none
were included in any of the JEP: General articles that we exam-
ined, and these ClIs were only reported in 1 of the 386 cognitive
articles that we surveyed (Morris & Fritz, 2011). Effect sizes, like

Table 3

means, are point estimates. They describe the sample and provide
an estimate of the population parameter. For an estimate to be
useful, it is important to provide some idea of how precise that
estimate might be—the expected range within which the popula-
tion parameter falls with some specified probability. When means
are reported, it is widely accepted good practice to report some
measure of variability—either the standard error, the standard
deviation (from which the standard error is easily calculated), or a
CI. These variability statistics provide a guide to the probable
values for the population parameter. The effect size estimate also
requires some accompanying description of its likely variability;
that variability statistic is the associated CI.

The lack of these CIs in research reports is, however, under-
standable. Textbooks that describe effect size statistics typically do
not provide associated guidance for calculating the ClIs. Com-
monly used statistical software packages also fail to provide them.
Furthermore, most measures of effect size are noncentrally distrib-
uted (see, e.g., Ellis, 2010, pp. 19-21; Grissom & Kim, 2005, p.
64), a somewhat nonintuitive concept that makes them more dif-
ficult to understand and to calculate. The Cls above and below the
effect size estimate are not equal in size and have to be estimated
by special software carrying out iterative procedures (e.g., Cum-
ming, 2012; Cumming & Finch, 2001; Smithson, 2003; Steiger,
2004). These unusual characteristics of Cls for effect size esti-
mates, combined with researchers’ lack of familiarity with them,
may help to explain why these Cls are not reported. In a later
section on Cls, we suggest sources for relevant software and offer
formulas to approximate CIs for Cohen’s d and R>.

Analyses were sometimes reported without the relevant descrip-
tive statistics, making it more difficult for the reader to understand
and evaluate the results. The most basic sort of effect size estimate
when evaluating differences is the difference between means, but
almost one quarter of f test reports were not accompanied by
means, and almost half lacked reports of variability measures.
When evaluating correlations, it is also necessary to consider the

Articles Reporting Additional Analyses Associated With ANOVA and Effect Size Reporting for Those Analyses

Articles with Post hoc or planned

Post hoc or planned

For significant interactions

Year ANOVA contrasts effect size No. of articles Simple effects Simple effect size
2009 27 16 1(6%) 18 10 (55%) 1 (10%)
2010 32 20 1(5%) 23 14 (44%) 2 (14%)
Overall 59 36 2 (6%) 41 24 (41%) 3 (13%)

Note. Atrticles were included in the counts if the analysis or statistic appeared at least once. ANOVA = analysis of variance.
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Table 4
Number (and Percentage) of Articles Reporting Effect Size
Estimates and Descriptive Statistics Associated With t Tests

Effect size

estimates Descriptive statistics
Year  Articles with 7 test d m M Variability
2009 23 9(39) 0 18 (78) 16 (70)*
2010 24 3(13) 2(8) 18(75) 10 (42)°
Overall 47 12(26) 2@&) 36(77) 26 (55)

Note. Articles were included if the statistic was reported at least once.

* Nine articles reported standard deviation, six reported standard error of
the mean, and one reported 95% confidence interval. ° Nine articles
reported standard deviation, and five reported standard error of the mean.

distribution of the data, but the great majority—about 80%—of
the correlation reports failed to include a description of the data.

The frequent use of ANOVA, reported in 83% of the JEP:
General articles, resembled our finding for cognitive journals
(Morris & Fritz, 2011) where 86% of articles reported at least one
ANOVA. There is an argument that ANOVA is overused and that
in many cases, regression would be more appropriate (e.g., Cohen,
Cohen, West, & Aiken, 2003). ANOVA is a valuable technique,
but when factors are categorized versions of continuous variables,
it is less appropriate than more flexible techniques, such as mul-
tiple regression. After all, ANOVA and regression both derive
from the general linear model, and ANOVA can be regarded as a
special case of regression (e.g., Tabachnick & Fidell, 2007, p.
155). To fit the requirements of ANOVA, researchers sometimes
treat continuous variables, such as age, skill level, and knowledge,
as if there were a small number of discrete, categorical values. This
process is problematic in that it loses some of the power inherent
in the original continuous variable. The fewer the number of levels
defined, the more data and thus the more power are lost. If just two
or three levels are defined, it can also be tempting when planning
factorial research to select groups or conditions that are high and
low on some variable and, as a result, to almost certainly overes-
timate the influence of the variable and the size of its effect in the
population including midrange values. In addition, although
ANOVA tests the statistical significance of each individual effect,

Table 5

Number (and Percentage) of Articles Reporting Effect Size
Estimates and Descriptive Statistics Associated With
Correlations

Descriptive statistics

Atrticles with Effect size

Year correlation ) M Variability
2009 14 1(7) 2 (14) 2 (14)*
2010 13 1(8) 5(38) 4 (31)°
Overall 27 2(7) 7 (26) 6(22)

Note. Articles were included if the statistic was reported at least once.
Although r is also a measure of effect size, it was not described or treated
as such in the articles surveyed.

2 The articles reported standard deviation. °Two articles reported stan-
dard deviation and two reported standard error of the mean.

Table 6

Number (and Percentage) of Articles Reporting Effect Size
Estimates and Descriptive Statistics Associated With Regression
Analyses

Descriptive statistics

Articles with

Year regression R* F M Variability
2009 8 4(7) 1(13) 6 (75) 6 (75)
2010 9 2(8) 3(33) 3(33) 2(22)
Overall 17 2(7) 4(24) 9(53) 8 (47)

Note. Atrticles were included if the statistic was reported at least once.
2One of the 2009 articles reported adjusted R> as well as R*; no other
articles reported adjusted R

multiple regression allows the effect of variables to be evaluated
both collectively and in terms of their individual contributions.
Statistical outputs of regression analyses typically include clear
measures of effect size at all levels and in various forms, through
R?, adjusted R>, changes in R?, standardized regression weights,
partial correlations and semipartial correlations. However, among
the articles surveyed, regression was rarely used except as a
model-fitting tool.

A substantial number of articles (20%) failed to report measures
of the variability of data analyzed by ANOVA. As we illustrated
earlier, standard deviations are as important as means for under-
standing data sets. One might argue that both standard deviations
and standard errors should be reported, which rarely occurred.
Where both were reported, it was usually the case that standard
errors appeared as error bars on a figure and standard deviations
were reported in the text or a table; this combination provided an
accessible, clear description of the data. Like significance tests and
ClIs, the size of standard errors depends on the sample size, so that
although a standard error is very valuable for interpreting differ-
ences between conditions, it does not provide an easily appreciated
idea of the distribution of the data. Standard deviations are a more
straightforward way of helping the reader conceptualize data sets.

Although the reporting of MSE is not a requirement for APA
journals, many editors encourage it, so it was surprising that 83%
of the articles surveyed did not include MSEs with the reports of
ANOVAs. The great advantage of reporting MSEs is that, along
with the value of the F ratio and its accompanying degrees of
freedom, knowledge of the relevant MSE allows the reader to
reconstruct the remaining ANOVA details for that test including
the sums of squares, which are useful for effect size estimations.
Thus, the reporting of MSEs opens up considerable opportunities
for readers wishing to understand the data in greater depth and
perhaps calculate their own effect size estimates. Ideally, for each
ANOVA it would be valuable for the article to include the signif-
icance tests of all effects—both significant and nonsignificant—
with their MSEs reported so that the full details of the analysis
could be reconstructed. Complete reporting would be useful for
meta-analyses and would allow readers to calculate the types of m?
and w? that they thought most appropriate.

Calculating Effect Sizes

Our aim in this section is to demystify as far as possible selected
effect size estimates and to recommend convenient ways of cal-
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culating them. General purpose statistics books for psychologists
(e.g., Aron, Aron, & Coups, 2009; Howell, 2002) typically address
few effect size statistics and may not consider them thoroughly.
Readers may prefer to consult specialized statistics books address-
ing effect sizes (e.g., Cumming, 2012; Ellis, 2010; Grissom &
Kim, 2005; Rosenthal et al., 2000).

This article addresses several effect sizes: those specific to
comparing two conditions (Cohen’s d, Hedges’s g, Glass’s d or A,
and point biserial correlation r), those describing the proportion of
variability explained (n?, M, m&, R, the »” family, adjusted R?,
and £2), and effect sizes for nonnormal data (z associated with the
Mann-Whitney and Wilcoxon tests, and ¢, Cramér’s V, and
Goodman—Kruskal’s lambda for categorical data).

Effect Sizes Specific to Comparing Two Conditions

The most common approach to calculating effect size when
comparing two conditions is to describe the standardized differ-
ence between the means, that is, the difference between the means
of the two conditions in terms of standard (z) scores. There are
varieties of this approach, discussed later, based on the way the
standard deviation is calculated. In all cases, the sign of the effect
size statistic is a function of the order assigned to the two condi-
tions; where the conditions are not inherently ordered, a positive
effect size should be reported. Online calculators for the standard-
ized difference statistics are available (e.g., Becker, 2000; Ellis,
2009).

Cohen’s d and Hedges’s g.  Cohen (1962, 1988) introduced a
measure similar to a z score in which one of the means from the
two distributions is subtracted from the other and the result is
divided by the population standard deviation (o) for the variables:

g M= My

(o)
where M, and M, are the two means and o refers to the standard
deviation for the population. Hedges (1982) proposed a small
modification for his statistic g in which the population standard
deviation (o, calculated with a denominator of n, the number of

cases) is replaced by the pooled sample standard deviation (s,
calculated with a denominator of n — 1)

My — M,
8= s .

The standard deviations made available by common statistical
packages are for the sample(s) so that the more convenient statistic
for researchers to calculate is g rather than d. However, as we
observed in our review, it is rare for authors to report Hedges’s g,
even though it may be what they have actually calculated. It
appears to be the case that d may be often used as a generic term
for this type of effect size. For example, Borenstein, Hedges,
Higgins, and Rothstein (2009) referred to the g statistic defined
above as d as does Comprehensive Meta-Analysis software that is
widely used for meta-analysis. These sources use g to refer to an
unbiased calculation, sometimes called d,,,,;.50q O d,y that is
particularly useful for small sample sizes, where d tends to over-
estimate the population effect size. The formula to adjust d, from
Borenstein et al. (p. 27), is

3
8 ordunb = d(l - Wi—l)

The correction is very small when the sample size is large (only
3% for df = 25) but is more substantial with a smaller sample size
(8% for df = 10). This value is not the same as the original
Hedges’s g (1982), described earlier, although g might be used to
refer to either; d,,,, is a less ambiguous symbol, but in either case
the formula should be provided for clarity.

A discussion of the rather confusing history of the chosen
symbols for these statistics can be found in Ellis (2010). For most
reasonably sized samples, the difference between Cohen’s d, cal-
culated using n, and Hedges’s g, calculated using n — 1 degrees of
freedom (df), will be very small. Especially when sample sizes are
small, it is helpful for authors to clearly specify how the reported
effect size estimates were calculated, regardless of what symbol is
used, so that the reader can interpret them correctly and they might
be useful for subsequent meta-analyses.

There is virtually always some difference between the standard
deviations of the two distributions. When the standard deviations
(s, and s5) and the sample sizes of the two distributions (A and B)
are very similar, it may be sufficiently accurate when estimating
the combined standard deviation (s,;) to take the average of the
two standard deviations:

Syt sp
Sap = -

When the standard deviations differ but the sample sizes for each
group are very similar, then averaging the square of the standard
deviations and taking the square root of the result is more accurate
(Cohen, 1988, pp. 43—44; Keppel & Wickens, 2004, p. 160):

2 2
At
Sap = )

However, where the sample size and/or the standard deviation of
the two distributions differ markedly it is usually recommended
(e.g., Keppel & Wickens, 2004) that the sums of squares and the
degrees of freedom for the two variables should be combined with
the following formula (Keppel & Wickens, p. 160):

kS, +5S,
Sas = \'af + dfy

That is, the sum of squares for the two variables A and B should be
added together, as should the degrees of freedom for the variables.
Then, the sum of the sums of squares is divided by the sum of the
degrees of freedom, and the square root of the result taken. When
not provided by the statistical package, the sum of squares for a
variable can be easily calculated from the standard deviation as

SS =df X s*
or from the standard error of the mean (SE) as
SS =df X SE> X N.

If pairs of conditions are being compared from among several
that have been evaluated by an ANOVA, rather than working out
the standard deviation for each comparison, it is acceptable to
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replace the combined standard deviation for the multiple compar-
isons by the square root of the MSE (Grissom & Kim, 2005):

Sup~ \MSE

In an attempt to help with the interpretation of d, Cohen (1988)
suggested that d values of .8, .5, and .2 represented large, medium,
and small effect sizes, respectively, perhaps more meaningfully
described as obvious, subtle, and merely statistical. He recognized
that what would be a large, medium, or small effect size would, in
practice, depend on the particular area of study, and he recom-
mended these values for use only when no better basis for esti-
mating the effect size index was available. These designations
clearly do not reflect practical importance or substantive signifi-
cance, as those are judgments based on a more comprehensive
consideration of the research.

Glass’s d or A.  An alternative to both Cohen’s d and Hedg-
es’s g involves using the standard deviation for a control group
rather than a standard deviation based on combining the groups.
This approach is appropriate if the experimental manipulations are
thought to have distorted the distribution in some way. This
measure was proposed by Glass (1976) and is known as Glass’s d
or A.

Point biserial correlation, r.  There are alternatives to using
the standardized difference statistics as described earlier. Some
(e.g., Rosenthal, Rosnow, & Rubin, 2000) have preferred the point
biserial correlation coefficient, 7, on the grounds that psychologists
are already familiar with it. Furthermore, 72 is equivalent to m* and
other effect size estimates that describe the proportion of variabil-
ity associated with an effect, described later. For two groups, the
point biserial correlation, r, is calculated by coding group mem-
bership with numbers, for example, 1 and 2. The correlation
between these codes and the scores for the two conditions give the
value of point biserial r. It is also easy to calculate r if an
independent samples ¢ test has already been carried out because

B I
"TANETar

Just as the sign of the ¢ statistic is an artifact of the order assigned
to the conditions, so too is the sign of the effect size. Unless there
is a meaningful order for the two conditions, the statistics should
be reported as positive numbers. If there is a meaningful order and
it was used for the 7 test, the sign of the 7 statistic should be applied
to r.

Table 7 provides values of r corresponding to values of d when
group sizes are similar. An excellent discussion of the relative
benefits and limitations of d and point biserial r is provided by
McGrath and Meyer (2006). For point biserial », McGrath and
Meyer suggested that values of .37, .24, and .10 represent large,
medium and small—or obvious, subtle, and merely statistical—
effect sizes, respectively. Formulas for converting between several
effect size estimates, including r, are provided in Table 8.

Effect Sizes Describing the Proportion of Variability
Explained

For pairs of conditions, it is also possible to apply proportion of
variability statistics such as R? or m?, in a manner similar to the
squared point biserial correlation, 7%, described earlier. We turn

Table 7
Associated Values of Cohen’s d, r, r (or *r]z), PS, and U,

d r > or > PS U,
0.0 .00 .000 50 0
0.1 .05 .002 53 8
0.2 .10 .010 56 15
0.3 15 .022 58 21
04 .20 .038 61 27
0.5 24 .059 64 33
0.6 .29 .083 66 38
0.7 33 11 69 43
0.8 37 .14 71 47
0.9 41 17 T4 52
1.0 45 .20 76 55
1.1 48 23 78 59
1.2 51 27 80 62
1.3 55 .30 82 65
14 57 33 84 68
1.5 60 .36 86 71
1.6 63 .39 87 73
1.7 65 42 89 75
1.8 67 45 90 77
1.9 69 47 91 79
2.0 71 .50 92 81
2.2 T4 .55 94 84
2.4 77 .59 96 87
2.6 79 .63 97 89
2.8 81 .66 98 91
3.0 83 .69 98 93
3.2 85 72 99 94
3.4 86 74 99 95
3.6 87 76 99 96
3.8 89 78 100 97
4.0 89 .80 100 98

Note. PS = probability of superiority. PS is the percentage of occasions
when a randomly sampled member of the distribution with the higher mean
will have a higher score than a randomly sampled member of the other
distribution. U, = the percentage of nonoverlap between the two distribu-
tions. Data are from Grissom (1994) and Cohen (1988); they assume
similar sample sizes.

next to these variability-based measures. Most of the variability-
based effect size estimates involve comparing various combina-
tions of sums of squares and means squares taken from ANOVA
summary tables.” To illustrate the different measures we refer to
Table 9, which reports an imaginary three-way between-subjects
ANOVA.

Partial eta squared (nf,). The nﬁ statistic is simply the ratio
of the sum of squares for the particular variable under consider-
ation divided by the total of that sum of squares and the sum of
squares of the relevant error term. It describes the proportion of
variability associated with an effect when the variability associated
with all other effects identified in the analysis has been removed
from consideration. As we described earlier, it is the most com-
monly reported effect size in recent issues of JEP: General. This
popularity is almost certainly because nﬁ can be calculated directly
by SPSS. In general, the formula is

2 Sums of squares are calculated by subtracting the mean for any set of
data from each score, squaring each result, and summing these squared
deviations from the mean. The mean square is the sum of squares divided
by the degrees of freedom.
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Table 8

Formulas for Deriving Effect Size Estimates Directly and Indirectly

To this statistic

Point biserial r m? with similar group sizes

From this statistic d
Direct formula J - M, — My
B o
d _
Point biserial r J - 2r
N
m? with similar group sizes 2y 2
d —
\(1 - le)
t with similar group sizes d = 2t
- -2

Seﬂem 2 SS/zxclur
r = n = <o
SS/oml SStotaI
d L, &
= n =
N d+4
_ V=7
e —
— [2 P 712
r = 2T df AL df

Note. When group sizes differ considerably (when one group has fewer than one third of the total N), then r is smaller than the above calculation. For
more information about the translation between statistics with very uneven sample sizes, see McGrath and Meyer (2006).

2 _ SSL’ffe('I
n P SSeffecr +S Sfrror.

As an example, in Table 9, Factor A has a sum of squares of 100,
and the error term has a sum of squares of 600, so

100

2= =
™ =100 + 600 '+

Apart from asking SPSS to calculate nﬁ, it is easy to abstract the
necessary sums of squares from ANOVA summary tables reported
by statistical software. It is also easy to calculate ni from an F ratio
and its degrees of freedom, because

1]2 _ dfe_[fecl X Feffect
P (dfeffecl X Fe_[ecl) + dfcrror.

Thus, it is possible to calculate *r]ﬁ from published results where the
authors have not reported this effect size.

Care must be taken when comparing nﬁ estimates across studies
with different designs to ensure that the error terms are compara-
ble. The size of nﬁ is influenced by changes to the error variability.
Error variability (SS,,,,,) increases when sources of variability are
neither controlled nor identified as part of the analysis; it decreases
when these sources of variability are controlled or are identified in
the analysis. The variability associated with an uncontrolled vari-
able appears in the SS,,,,,. thereby reducing the size of T]ﬁ, whereas
controlling that variable or including it as an individual differences
factor in the analysis removes that variability from the SS,,,.,.
thereby increasing the value of 1]12,. Some of these issues can be
addressed by using m&, which we discuss later.

One can use ni to compare the effect of some factor that appears
in multiple studies but only when the error terms are comparable;
Mg (see later) is more generally useful for between-study compar-
isons. For comparing the relative contribution of different factors
within a single study, T]f, is not useful because the baseline vari-
ability (i.e., the denominator) is different for each calculation.

Eta squared (m*). The n? statistic (sometimes called R?) is a
simple ratio of the variability associated with an effect compared with
all of the variability in an analysis.? It describes the proportion of the
total variability in the data that are accounted for by the effect under
consideration. One can easily calculate n> from the ANOVA output
from a statistical package; it is the ratio of the sum of squares for the
effect divided by the total sum of squares. That is,

_ SSe[ﬁ’cr
B SSrmul.

2

Thus, in Table 9, nz for Factor A is calculated from the sum of
squares for A (100) and the total sum of squares (1,280). So, for
Factor A,

,_ 100 _

"= 1280 .08.

One can also calculate m> from reported F ratios and degrees of
freedom where all of the effects from an ANOVA are reported. In
a two-factor (G X H) between-groups design, for the effect of
Factor G

. df s X Fo
n (dﬁ{ﬂ’z‘cm X FG) + (dﬁ{ﬂ’z‘crux FH) + (dﬁ{/%cmxux FGXH) + df;rmr.

3 Some authors prefer to refer to m> as R> because it fits with the
statistical convention of reserving Greek letters for population parameters
and because of the commonality with R for regression. Although it seems
simpler to use just one term for the proportion of variability explained,
statistical software and textbooks most often use > for ANOVA and R for
regression. Furthermore, n]z,, which is more often used than nz, is equiva-
lent to a partial correlation—a concept that is less familiar to people who
do not use multiple regression regularly. We choose to use m> with
ANOVA for these reasons and because there is an argument that applying
one term to ANOVA and another to regression is clearer and simpler.
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Table 9
Example Between-Groups Analysis of Variance Summary Table With Calculations of 7, né, o2, and wﬁ

Source SS df MS F > m; »? o)
Factor A 100 1 100 9.3 .08 .14 .07 12
Factor B 200 1 200 18.7 .16 25 15 22
Factor C 50 1 50 4.7 .04 .08 .03 .06
A X B 100 1 100 9.3 .08 .14 .07 12
A XC 20 1 20 1.9 .02 .03 .01 .01
B X C 10 1 10 0.9 .01 .02 0 (—.001)* 0 (—.002)*
AXBXC 200 1 200 18.7 .16 25 15 22
Error 600 56 10.7
Total 1,280 63
Note. SS = sum of squares; MS = mean squares.

* Negative values of »” can occur when F < 1. Keppel and Wickens (2004) recommend setting the value to zero.

The denominator term (SS,,,,,) sums the degrees of freedom for the
error term with the products of each F ratio and its corresponding
degrees of freedom.

The m? statistic is a useful measure of the contribution of an
effect—of a factor or an interaction—to the observed dependent
variable. So, for example, examining the values of m? in Table 9
reveals that Factor B accounts for twice as large a proportion of the
total variability as Factor A, but also that the three-way interaction of
Factors A, B, and C contributes as much variability as does Factor B.

For comparing the size of effects within a study, n? is useful, but
there are risks in comparing m? values across studies with different
designs. These risks derive from the differences in total variability that
arise from manipulating additional variables, thereby adding variabil-
ity, or from controlling variables, thereby reducing variability. If the
effect of Factor A is the same across two studies (i.e., SS, remains
constant), a study that manipulates Factor A alone will have a greater
value for m? than one that manipulates Factor A and introduces an
additional manipulated Factor B. This difference is because in the
latter case, the total variability is increased by the variability intro-
duced with Factor B. Conversely, controlling variables so that they do
not contribute their variability to the overall ANOVA will, obviously,
reduce the SS,,,,,- If the controlled variables do not interact with an
effect, so that the SS,,, is unchanged, then the m? for that effect will
be larger than if the variables had not been controlled.

Unmatched total variability is an issue for cross-study comparisons
involving most measures of effect size. Cohen’s d, for example,
depends on the standard deviations of the variables and they, in turn,
depend on the extent to which other factors have been controlled.

Psychologists calculating n? for their own data for the first time
are often disappointed by the size of the effect that they are
studying. A manipulation with an n> of .04 accounts for only 4%
of the total variability in the dependent variable—an amount that
may seem trivial, especially when compared to r* values com-
monly seen in correlational research. It may be easier to deal with
small m? values in terms of Cohen’s (1988, pp. 283-287) descrip-
tion of large (.14), medium (.06), and small (.01) effects, but
obviously it is the practical or theoretical importance of the effect
that determines what size qualifies the outcome as substantively
significant. In most experimental research, observed effect sizes
are likely to be small; many factors influence behavior in almost
any area, and few of these will be examined in the analysis. It
would be an exceptional situation to research a behavior that was
determined by only one or two causal factors. Each factor makes

its own contribution to the total variability under consideration. If
several factors vary together, they may jointly account for a
substantial proportion of the variability, but any individual factor
might contribute only a relatively small part of the whole. Alter-
native calculations, described later, produce variants of n? that
eliminate some of the other variability from consideration.

Generalized eta squared (). Scientific research is a cumu-
lative activity; it is necessary to compare and combine the results of
research across studies. Unfortunately, neither 1> nor nf) is well suited
for making comparisons across studies with different designs. mZ
provides a way to compare effect size across studies; it was introduced
by Olejnik and Algina (2003) and Bakeman (2005) extended their
description of its use for repeated measures designs. Like R” and 1?2,
Mg gives an estimate of the proportion of variability within a study
that is associated with a variable but without the distorting effects of
variables introduced in some studies but not others. For Olejnik and
Algina, the distinction between manipulated factors and individual
differences factors is key. To illustrate the distinction, a study that
tested children in two different types of experimental rooms would
have room type as a manipulated variable. However, if the children
from a class were classified into groups by their ages and by their
personalities, these would be individual differences factors. The cen-
tral idea when calculating mZ is that the sums of squares for manip-
ulated variables are not included in the denominator of the calculation,
except under two conditions. Those conditions are (a) when calculat-
ing mg for the manipulated variable itself and (b) when calculating ng
for an interaction between that manipulated variable and either an
individual differences factor or a subject factor in a repeated measures
design (i.e., the between-subjects error term).

We can demonstrate the calculation of ng using the Table 9
example. Suppose that, continuing our developmental example, Fac-
tor A is the room type in which the children are tested, Factor B is age
group (younger or older children from the class), with two levels, and
Factor C is a two-level classification of the children, such as introvert
or extravert. Factor A is a manipulated factor but Factors B and C are
individual differences factors. To calculate mZ for Factor B (Age, an
individual differences factor), use the formula for n)? but remove from
the total sums of squares in the denominator the sums of squares
associated with Factor A because it is a manipulated factor—one that
adds variability to the design. Thus, although m? for Factor B is

, 5SSy 200
= -
St 1280

.16,
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the adjusted calculation for n is

, 58y 200 200

M6 = gg ss, 1280 — 100 1180 L7

The adjustment, removing the variability that was added by the
manipulated variable, results in a higher value for m&; more
importantly, it is a value that can be compared with the ng value
from another study, even if the designs of the two studies differed.

As a further example, suppose that Factor C was, instead, a
manipulated variable such as presence or absence of an adult in the
room. In this case, the ng for Factor B will remove the variability
associated with both manipulated variables (A and C) and their
interaction (A X C):

, SS, - 200
NG = §S, " 8S, — SS. — SSuc 1280 — 100 — 50 — 20
_200
1o 8

Similar calculations can be easily made for repeated measures
designs, although the denominator may have to be constructed by
accumulating the appropriate sums of squares rather than by sub-
traction from the total sum of squares. These sums of squares can
be obtained as part of the analysis from the statistical software or,
for published work, by reconstructing the ANOVA summary table
(such as in Table 9) if the reporting of the ANOVA was suffi-
ciently complete—that is, if all effects were reported complete
with all mean squares for the error terms (MSEs).

As an example of constructing mZ for a repeated measures
factor, imagine that an analysis involves just two repeated mea-
sures factors, P and Q, with both as manipulated factors. When
creating the denominator for the effect size of Factor P, the sum of
squares for Q will be omitted. However, the denominator will
include all sources of variability associated with P or with the
between-subjects error: the sums of squares for P, for subjects
(Subj), and for the interactions P X Subj, Q X Subj, and P XQ X
Subj. So, for P,

, SS,
NG S8+ SSsuy T SSpcsuy + SSowsuy T SSponsay

Details of the appropriate sums of squares to be included in the
denominator for most common designs can be found in Bakeman
(2005).

R?. In regression, R? is the square of the correlation between
the observed values and the values predicted by the regression
equation. It is used to report the proportion of the variability of the
dependent variable that is predictable from the set of variables
entered into the regression and thus provides a good effect size
estimate. R” is calculated from the ratio

_ SS Regression

R* =
SS Total

R? is similar to m? in that the variability associated with the focus
of the analysis—in this case the prediction—is considered as a
proportion of the total variability; R* and m? are identical when the
predictor is a factor, coded as a dummy variable. Changes in R*

when new variables are added in hierarchical regressions allow the
contributions of independent variables to be assessed.

R2 _ SSChange

Change SST()mI '

The square of the semipartial (“part” in SPSS) correlation between
an independent variable and the dependent variable when the other
independent variables have been controlled gives the proportion of
the total variability uniquely predicted by the independent vari-
able—analogous to m?. Similarly, the square of the partial corre-
lation between an independent variable and the dependent variable
is analogous to nﬁ. Thus, in multiple regression analyses, RZ,
ch,umge, the squared semipartial correlations and the squared par-
tial correlations answer many questions about the size of the
relative contributions of the dependent variables. Note that al-
though R? and v are the same in that each describes the proportion
of the total variability that is accounted for, their use is somewhat
different. In regression, R? describes the effect of a set of variables
(one or more), whereas in ANOVA, m? describes the effect of a
single factor or interaction (equivalent to the squared semipartial
correlation in regression).

o’, 3, and wg. The various m” and R” statistics describe the
effect size observed in the research. However, it is often valuable
to think beyond a particular study, to the population from which
the sample came, and therefore of the effect size that would be
predicted in a replication of the study. In a replication, the vari-
ability accounted for by each factor or set of predictors is likely to
be somewhat different from the observations from one sample.
Sample variability includes both population variability and sam-
pling variability and so tends to be somewhat larger than the
population value alone. Thus, R? overstates the variation in the
population, especially for small effects. Various statistics have
therefore been developed to estimate the effect size in the popu-
lation rather than the observed sample.

One statistic that is popular with the authors of statistical text-
books (e.g., Hays, 1973; Howell, 2002; Keppel & Wickens, 2004;
Tabachnick & Fidell, 2007) is w>. However, our survey of recent
JEP: General articles and of articles from three 2009 cognitive
journals (Morris & Fritz, 2011) found that despite the recommen-
dations of these and other textbook authors, it is very rare for an
article to report w>. We observed only one instance in the com-
bined set of 457 articles.

As for m?, there are three types of »? estimates: w?, wﬁ, and 0g.
The basic principle of w? is that it is the ratio of the population
variability explained by the factor being measured to the popula-
tion’s total variability. For a one-way ANOVA, the total variability
can be divided into the variability associated with a particular
factor and the error variability. So, for a one way ANOVA with
Factor A,

2
o
2 _ A
2 2
o+ 05,

error

(O]

where o3 represents the population variance for Factor A, and
a2, represents the appropriate population error variance

error

for Factor A. The same formula applies when calculating
mlz,, where the error term is the term against which the
relevant factor is evaluated.
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The basic formula for estimating w? in a one-way ANOVA or
mi in a factorial design is

SSe/fecl - (a - 1) X MSerror
SS/maI + MSerror ’

2 2 —
®” or o, forA =

where a is the number of levels of the factor (Hays, 1973, p. 513).
This same value can be calculated directly from the F statistic
(Keppel & Wickens, 2004, p. 233):

(a— 1D X(Fy—1)
a—DXFE,—D+N

2 2 _
w” or u)pforA—(

where a is the number of levels of the Factor A, and N is the total
number of subjects.

One can calculate w? in a similar way for multifactor between-
subject designs. The numerator remains the same, but the denom-
inator includes the product of the degrees of freedom and the F
ratio reduced by 1 for each of the effects (factors and interactions)
in the analysis. So, for a multifactor design,

2 _ (a_l)X(Fe]j‘ect_l)
- z[df;']j‘ect X (Fe]j‘ect - 1)] +N ’

w

summing across all of the effects (Keppel & Wickens, 2004, p.
481).

We have used the formulas to calculate »® and wf) for each of
the factors in Table 9. For these particular imaginary data, »> and
m? are similar and so are wi and ni. This near identity is because
the example has a reasonable sample size, with just two levels for
each factor, and the effect itself is large. The size of the distortion
for sample rather than population effect size calculations (i.e., m>
rather than w?) depends on the number of participants tested, the
number of levels of the factors, and the size of the effect. More
participants, fewer levels, and larger effects lead to less difference
between w? and m?. With reasonably sized samples, limited num-
bers of factor levels, and larger effects, the overestimation of n2
may often be acceptable. This is fortunate, because there are
problems in estimating w” for repeated measures designs; for
these, only a range, not the actual value, can be calculated (Keppel
& Wickens, 2004, p. 427). Instead, T]2 has to be reported, but the
inflation of the estimate has to be recognized. Advice on calculat-
ing g can be found in Olejnik and Algina (2003).

Rﬁdj and €2 For the R calculated by multiple regression,
there has long been the Wherry (1931) formula for calculating
adjusted or shrunken R? (Rfldj) with the aim of predicting, like w?,
the R? to be expected if the study were to be repeated with a
sample from the same population.

Ry=1-a-ry !
adj — ( )N_k_ls

where N is the sample size, and k is the number of independent
variables in the analysis. Many statistical software packages cal-
culate Ridj.

A similar approach is taken to calculating an effect size known
as €2 (Ezekiel, 1930), which is an alternative to 2. However, €2 is
rarely reported, and we do not discuss it further here. Details of its

calculation can be found in Richardson (1996).

Effect Sizes for Nonparametric Data

Effect size estimates for Mann—Whitney and Wilcoxon non-
parametric tests. Most of the effect size estimates we have
described here assume that the data have a normal distribution.
However, some data do not meet the requirements of parametric
tests, for example, data on an ordinal but not interval scale. For
such data, researchers usually turn to nonparametric statistical
tests, such as the Mann—Whitney and the Wilcoxon tests. The
significance of these tests is usually evaluated through the approx-
imation of the distributions of the test statistics to the z distribution
when sample sizes are not too small, and statistical packages, such
as SPSS, that run these tests report the appropriate z value in
addition to the values for U or T; z can also be calculated by hand
(e.g., Siegel & Castellan, 1988). The z value can be used to
calculate an effect size, such as the r proposed by Cohen (1988);
Cohen’s guidelines for r are that a large effect is .5, a medium
effect is .3, and a small effect is .1 (Coolican, 2009, p. 395). It is
easy to calculate r, r?, or > from these z values because

z

r=-——=

f’

N

and

2
P or n2=£
N

These effect size estimates remain independent of sample size
despite the presence of N in the formulas. This is because z is
sensitive to sample size; dividing by a function of N removes the
effect of sample size from the resultant effect size estimate.

Effect sizes for categorical data. Categorical data are often
tested with the chi-square statistic (x*) but, like ANOVA and ¢
tests, the significance of a x? test depends on the sample size as
well as the strength of the association. There are various measures
of association for contingency tables; we describe three that may
be used for unordered categories. These can be easily calculated
using SPSS by choosing Analyse, Descriptive Statistics, Cross-
tabs, Statistics and choosing the appropriate statistic.

Where the data being analyzed are in a 2 X 2 contingency table
the ¢ correlation coefficient can be used. One can calculate ¢ from
x> for the data using the formula

_ K
oo

where N is the total sample size. If, for example, the obtained value
of x* was 10 with a sample size of 40 then

10
b= /35 = V0.25 = 05.

Cramér (1946) extended the ¢ statistic to larger contingency tables
than the 2 X 2 of the ¢ correlation. This statistic, known as
Cramér’s V or ¢, modifies the formula for ¢ to be

XZ
b= \/m,
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where N is the total sample size, and k is the number of rows or
columns in the table, whichever is the smaller. Be aware that,
unlike Pearson’s r, the square of ¢, or of Cramér’s V, is not a valid
description of the proportion of variability accounted for (Siegel &
Castellan, 1988, p. 231).

When the rows and columns of a contingency table represent a
predictor and a predicted variable, Goodman—Kruskal’s lambda
(L) describes how much the prediction is improved by knowing the
category for the predictor, a potentially useful description of the
size of the effect (Ellis, 2010; Siegel & Castellan, 1988). One may
calculate lambda from any size contingency table; two values can
be calculated: how well the row variable improves the predictabil-
ity of the column variable and vice versa. Usually only one
direction is meaningful. To calculate L, for predicting column
membership from row membership, sum the highest frequency in
each of the columns, subtract the largest row total, and divide by
the total number of observations not in that largest row. The
formula is

S5y — max(Ry)
me - N — max(Rl) >
where k is the number of columns, n,,; is the highest frequency in
the jth column, max(R,) is the largest row total, and N is the total
number of observations (Siegel & Castellan, 1988, p. 299). So, for
example, to determine how much attending a seminar improved
the ability to predict an adequate answer on the relevant exam
question, the contingency table might appear as in Table 10. One
would calculate lambda as

_(75+300-90 15

row 144 — 90 _574: 28,

so knowing row membership improves prediction of answer qual-
ity by 28%. Notice that lambda can also be zero as in the altered
data in Table 11. Here, lambda is calculated as

(75+15-90 0
L™ Taa—00 “s” %0
Where knowledge of the row does not contribute to predicting
column membership, lambda is zero. The lambda statistic seems
especially useful in describing the size of the effect in terms that
people without statistical training are likely to easily understand.

ClIs for Effect Sizes

As discussed earlier, the calculation of CIs for effect sizes is not
as straightforward as it is for means because the distributions are
not centered on the effect size value. Help is available, though.
Cumming (2012) provided guidance and Excel-based software for
calculating CIs for d, which can be downloaded from http://

Table 10
Example Contingency Table

Seminar attendance Adequate answer Poor answer Total
Attended 75 15 90
Not attended 24 30 54
Total 99 45 144

Table 11

Altered Example Contingency Table With L = 0

Seminar attendance Adequate answer Poor answer Total
Attended 75 15 90
Not attended 45 9 54
Total 120 24 144

www.thenewstatistics.com. Bird (2002) described methods for cal-
culating effect sizes for ANOVA, and Smithson (2003) provided
instructions and downloadable scripts for SPSS, SAS, SPlus, and
R for calculating CIs for effect sizes associated with ¢ tests,
ANOVA, regression, and x? analyses at http://dl.dropbox.com/u/
1857674/Clstuff/CLhtml. This webpage also provides links to
other websites that may be helpful. These calculators include
consideration of the noncentral nature of the distribution. Further
details on calculating noncentral effect size CIs were given by
Steiger (2004). However, it may not always be possible or neces-
sary to adjust for noncentrality: Bird (2002, p. 204) observed that
where the effect is not too large (e.g., d = 2) and there are
sufficient degrees of freedom in the error term (more than 30), the
adjustment makes little difference.

Cls for d can be estimated with the procedure from Grissom and
Kim (2005, pp. 59-60); this estimate does not adjust for noncen-
trality but is useful for normally distributed data, reasonable sam-
ple sizes (at least 10 per group), and values of d that are not very
large. The calculation is based on Hedges and Olkin’s (1985)
formula for calculating the variance (s,”) for the theoretical sam-
pling distribution of d:

, Mgt &

Sa n,1, 2(”{1 + nb)’

where n,, and n, are the sample sizes. The limits of the 95% CI
would be

95% CIA =d + Z.02554-

Most statistics textbooks and websites provide tables of areas
under the normal distribution that provide values for z at the
desired cutoff. The cutoff is simply half of the difference between
1.00 and the desired CI. For a 95% CI, the cutoff is half of
(1.00-.95) which is .025; table lookup provides the corresponding
z value, which is 1.96. Grissom and Kim provided the following
example: For n, = n, = 20 and d = 0.7, then s> = 0.106 and s5,, =
0.326; the 95% CI would be 0.7 = (1.96 X 0.326), giving a lower
limit of 0.06 and an upper limit of 1.34. The resultant range of
values for d—from almost zero to a very large effect size—is so
broad that it would be difficult to draw any conclusions on the
basis of the research, despite having observed a moderately large
effect. Although effect sizes are independent of sample size, their
presumed accuracy is increased by larger sample sizes, so the
range of values in the CI becomes narrower with larger samples. If
this example involved groups of 100 cases rather than 20, the
bounds of the 95% CI would be .41 to .99. Replicability, as always,
is an important source of confidence and even the broad ranges are
useful in meta-analyses (e.g., Borenstein et al., 2009); they allow
a clear pattern to emerge from multiple studies in forest plots, a
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useful graphical aspect of meta-analysis (for notes about their
origin, see Lewis & Clarke, 2001).

Cohen et al. (2003, p. 88) described a method for estimating Cls
for R?, provided that the sample size is greater than 60. The
standard error of R? is calculated

B /4R2(1 —R)P(n—k— 1)
SEe =TT W Dn+3)

where n is the number of cases and k is the number of independent
variables. The bounds of a 67% CI can be estimated as R*> = SE,;
factors of 1.3, 2, or 2.6 can be applied to the standard error to
provide estimates of 80%, 95%, or 99% Cls, respectively. This
estimate does not adjust for noncentrality, but with larger samples,
the expected error is small.

Translating Between Effect Sizes

We have described many ways of estimating effect sizes. Per-
haps one of the reasons why effect sizes are underreported and
infrequently discussed is that effect sizes may be reported using
one statistic in one study and a different statistic in another study,
making it difficult to compare the effect sizes. Many of the effect
size estimates can be converted to other estimates. In Table 8, we
have provided formulas for translation between d, r, and nz.

Interpreting Effect Sizes

The object of reporting effect sizes is to better enable the reader
to interpret the importance of the findings. All other things being
equal, the larger an effect size, the bigger the impact the experi-
mental variable is having and the more important the discovery of
its contribution is.

In Table 7, we offer not only corresponding values for d, r, 72,
and n? but also two statistics—probability of superiority (PS) and
the percentage of nonoverlap of the distributions (U,)—that help
to clarify the relationships between the distributions of the condi-
tions being compared. The values of these statistics help the
readers of reports to imagine the relationships between the two
distributions from which the effect size was calculated. We suggest
that one of these statistics be given along with the effect size
estimate for the more important results reported in an article.

PS gives the percentage of occasions when a randomly sampled
member of the distribution with the higher mean will have a higher
score than a randomly sampled member of the other distribution.
The values in Table 7 were abstracted from Grissom (1994). PS is
also known as the common language effect size (McGraw &
Wong, 1992). Consider, as an example, a medium size effect of
d = 0.5 as defined by Cohen (1988). The PS for a d of 0.5 is 64%.
That is, if you sampled items randomly, one from each distribu-
tion, the one from the condition with the higher mean would be
bigger than that from the other condition for 64% of the pairs. A
real-world example is given by McGraw and Wong (1992): The d
for the difference in height between men and women is 2.0 for
which the PS is 92%. That implies that if you compared randomly
chosen men and women, the man would be taller than the woman
for 92% of the comparisons. Finally, selecting an example from
the JEP: General articles that we reviewed earlier, Elliot et al.
(2010, Experiment 2) found that women rated men seen in pictures
with a red background as more attractive than men seen against a

white background, d = 1.31. Consulting Table 7 gives a PS of 82%
for this value of d. That is, if pairs of pictures, one with a red and
one with a white background, were selected at random, the picture
with the red background would be reported as more attractive on
82% of comparisons. This use of the PS statistic helps to demon-
strate the size of the effect in a more concrete and meaningful way
than the standardized difference. This concept has been elaborated
and extended by Vargha and Delaney (2000) to include all types of
ordinal and interval data.

Table 7 also reports U,, which was devised by Cohen (1988). U,
describes the degree of nonoverlap between the two population
distributions for various values of the effect sizes. For example,
when d = 0, the populations for the two distributions are perfectly
superimposed on each other, and the value of U, is zero; when d =
0.5, U, = 33%, one third of the areas in the distributions do not
overlap. U, = 81% for the difference between the height of men
and women with d = 2.0 (McGraw & Wong, 1992); that is, 81%
of the distributions for men and women do not overlap. For Elliot
etal.’s (2010, Experiment 2) data on the attractiveness of men seen
with red or white backgrounds, the U, percentage nonoverlap of
the distributions for the value of d = 1.31 is 65%. As for PS, the
U, statistic helps the reader to visualize the size of the effect being
reported.

The substantive significance, or importance, of an effect de-
pends in part on what is being studied. Rosnow and Rosenthal
(1989), for example, illustrated how a very small effect relating to
life-threatening situations, such as the reduction of heart attacks, is
important in the context of saving lives on a worldwide basis (see
Table 12 and Ellis, 2010). When the data are the correlation of two
binary variables—such as having or not having a heart attack when
in a treatment or a control condition—Rosnow and Rosenthal
recommended the use of what they called the binomial effect size
display to represent the relationship. The use of the binomial effect
size display is illustrated in their example: Table 12 shows the
frequency of heart attacks in a large study of doctors who took
either aspirin or a placebo for the effect size » = .034. The success
rate for the treatment is .50 + 7/2 and for the control group is .50 —
/2. For the example in Table 12, these values are .50 + .017 and
.50 — .017. The table cells are then made up to complete 100% for
the columns and rows. The success rate for the treatment is
calculated by subtracting the treatment effect (e.g., for aspirin)
from the control effect (e.g., the placebo). For our example, that is,
51.7 — 48.3 = 3.4% or r = .034; thus, 34 people in 1,000 would
be spared heart attacks if they regularly took the appropriate dose
of aspirin. It should be noted that although the simplicity of

Table 12
Binomial Effect Size Display for the Effect of Aspirin on Heart
Attack Risk (r = .034)

Treatment Heart attack No heart attack Total
Aspirin 48.3 51.7 100
Placebo 51.7 48.3 100
Total 100 100 200

Note. Values are percentages. Adapted from “Statistical Procedures and
the Justification of Knowledge in Psychological Science,” by R. L. Rosnow
& R. Rosenthal, 1989, American Psychologist, 44, p. 1279. Copyright 1989
by the American Psychological Association.
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calculation and clarity of presentation of the binomial effect size
display is attractive, Hsu (2004) has shown that it can overestimate
success rate differences unless various conditions are met.

Considerations When Reporting and
Using Effect Sizes

Effect sizes estimates are important and useful descriptive statistics.
Like all good descriptive statistics, they reflect the properties of the
data and the conditions under which the data were collected. Just as
means are valuable estimates of central tendency that can, neverthe-
less, be misleading if the distribution is skewed—for example, when
studying income or life expectancy—so effect sizes must be con-
sidered within the context of the design and procedure, also con-
sidering the properties of the distributions. If the measures used are
unreliable or if their range has been restricted, then the value of the
effect size estimate will be different from, and probably smaller
than, one that comes from very reliable measures or data that cover
the full range. The allocation of observed variability to identified
effects or to error will also influence estimates of effect size.
Imagine studies of a factor that has a similar effect on people from
various economic classes. One study samples only middle-class
people; the error variability in this case would be smaller than the
error variability in another, similar study that samples more
widely. Because the error variability is smaller in the first case, the
size of the effect is likely to appear larger. Yet, another study
might account for variability associated with socioeconomic group
by including income as a factor or covariate in the analysis,
thereby reducing the error variability and increasing the apparent
effect size. In general, if variables are controlled in a study and
therefore do not contribute to error variability, the estimated effect
size is likely to be larger than effect sizes for studies in which
variables have not been controlled or have been counterbalanced
across the conditions (without including the counterbalancing fac-
tor in the analysis). It is possible to correct some effect size
estimates for some of these distorting factors by using statistics
such as mg and g (Baguley, 2009; Grissom & Kim, 2005; Olejnik
& Algina, 2003), but in all cases, interpretation and comparison of
effect sizes requires careful consideration of the sources of vari-
ability.

The key point is that all estimates of effect size should be
evaluated in the context of the research. It is not sensible to say of
some phenomenon that its effect size is X without qualifying under
what conditions it has been found to be X. Nevertheless, estimates
of effect size provide both an invitation to further, meaningful
interpretation and a useful metric for considering multiple, varied
studies together. Complete effect size information, including the
CIs of the effect size estimates, is helpful to subsequent meta-
analyses, and these meta-analyses make an excellent contribution
to furthering the understanding of psychological phenomena. Just
as psychology researchers have become sophisticated in dealing
with the complexities of inferential statistics, the regular consid-
eration of effect sizes can lead to these statistics being demystified
and becoming valuable tools.

In our surveys of the reporting of effect sizes, we have not
encountered any occasion when more than one effect size was
reported for any particular effect. This selectivity may result from
efforts toward conciseness in reporting, or it may reflect a strategy
of doing the minimum required to placate reviewers and editors.

Nevertheless, we suggest that in some cases, in addition to report-
ing PS and/or U, to clarify the interpretation of an effect size, it is
often worthwhile to report more than one measure of effect size to
better interpret the results. It would, for example, be appropriate to
report nf) to indicate the proportion of variability associated with a
factor when all others are controlled, but also to report ng to give
an idea of the contribution that the factor makes to the overall
performance when other nonmanipulated variables are allowed to
vary. Both of these values would be useful in evaluating the effect.
To provide another example, Cohen’s d is useful for conceptual-
izing and comparing the size of a difference independently of the
specific measure used; it enables comparisons between studies
concerned with the same factor but using different dependent
measures. However, interpretation of the results and of compari-
sons could be enriched by also considering  or 7* as measures of
the relative impact that the factor has on the outcome as is
sometimes done in regression analyses where both the value of the
standardized regression coefficient and the proportion of variance
accounted for are discussed. The APA Publication Manual (APA,
2010, p. 34) specifically suggests that it will often be useful to
report and discuss effect size estimates in terms of the original
units, as well as the standardized approaches. The effect size
expressed in original units is often clear and easy to discuss in the
context of a single study, whereas the standardized units approach
facilitates comparisons between studies and meta-analyses. It is
also useful, when disentangling the effect of a factor with more
than two levels, to provide an effect size estimate for the full effect
of the factor and for each of the pairwise comparisons or other
linear contrasts (see Keppel & Wickens, 2004). Similarly, analysis
of simple main effects associated with an interaction should in-
clude effect size estimates both for the interaction and for the
simple main effects.

Good practice with respect to effect size reporting appears to be
on the increase but does not seem to have been fully adopted by
most authors. Roughly half of the ANOVA reports included a
measure of effect size, although few included effect size estimates
for further analyses related to the ANOVA. In a few articles,
authors were thorough in reporting nﬁ for the main effect in an
ANOVA and reporting Cohen’s d or m? for simple effects or
planned or post hoc comparisons. As with all analyses, it is
important to think carefully about which type of effect size is most
useful for each comparison (e.g., m? or nﬁ). Keppel and Wickens
(2004) and Rosenthal et al. (2000) provided helpful advice on
using contrasts and comparisons in ANOVA designs.

We began this research with an interest in the use of effect sizes
as a way of quantitatively describing effects—as a supplement to
the descriptions of the data and the results of statistical tests for
those effects. We found that authors have begun to include reports
of effect size estimates with substantial encouragement from the
APA and related professional organizations as well as from journal
editors. Nevertheless, although slightly more than half of the
articles report some effect size estimate, the majority of individual
effects that are tested and reported are still not accompanied by
descriptions of effect size. We also found that descriptions of data
were often lacking. For a reader to engage with, think though, and
fully consider the implications of the results of a study, descrip-
tions of data and of the size of observed effects—both significant
and nonsignificant—are needed. It is not enough to simply identify
that some effects were significant and others were not. There have
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been calls from some quarters to shift the emphasis away from
inferential testing and toward a more descriptive and thoughtful
approach to interpreting results (e.g., Cohen, 1994; Loftus, 1996).
Although we are sympathetic to many of those concerns, we value
an approach that includes complete reporting of statistical tests
combined with descriptions of both the data and the effects. The
value of a piece of research goes beyond its significant effects. The
richness of the story and the argument presented by the research is
essential to the development of greater understanding (e.g., Abel-
son, 1995), but the patterns in the data and in the effects must be
reported in order for the reader to engage with the author in
comprehending and evaluating the results of the research. At the
moment, for most authors, considering effect sizes seems to be the
last stage of their examination of their data. We believe that it
should become one of the first stages. A clear grasp of the size of
the effects observed is at least as important as significance testing
or the calculation of CIs.

When reporting requirements change, it is usually necessary for
people to learn, perhaps to teach themselves, about the new sys-
tems. It is not always easy to do so. Because we teach statistics as
well as conduct research, we have been driven to explore the types
of effect sizes and the usefulness of each. Our review of the
reporting of effect sizes suggests that many authors have sought
the minimum engagement with effect sizes that is possible while
still being published. This approach is suggested by the frequent
choice of effect size measures that are easily available (e.g., nﬁ)
but less than optimally useful and usually not those recommended
by the authors of statistical textbooks (e.g., w?). Statistical texts
likely to be accessed by researchers are often selective in their
advice about effect sizes. There are excellent discussions of the
complexities of effect size available in specialist journals, but they
tend to be presented in the often dense language of statistical
formulas that are understandably avoided by all but the most
competent or desperate researchers. We hope that this article
provides a shortcut in the process of accumulating the necessary
expertise to report and use effect sizes more effectively and helps
people to appreciate the value of incorporating good descriptions
of data and effect sizes in their reports.

We end with a minimum set of recommendations that are
designed for the novice effect size user (we include ourselves in
this category) and are not intended to constrain the fuller use of
alternative techniques. We suggest the following:

1. Always describe the data: (a) report means or other
appropriate measures of central tendency to accompany
every reported analysis, and (b) report at least one asso-
ciated measure of variability for each mean and the MSE
for ANOVA analyses.

2. Also describe the effects: (a) report an effect size esti-
mate for each reported analysis, (b) for the most impor-
tant effects, report complete effect size information, in-
cluding the CIs of the effect size estimates for possible
use in subsequent meta-analyses, (c) for the difference
between two sets of data, as a default, use Cohen’s d (or
Hedges’s g) as the effect size estimate and, for small
sample sizes, also report d,,,;;...q» a0d (d) for factorial
analyses, with due thought and consideration, select and
report m°, Mg, and/or m; as appropriate for the interpre-

tation provided in the report, and where effects or Ns are
small, indicate the possible inflation of n? by also report-
ing »?, wg, and/or o’

3. For complex analyses, such as factorial ANOVA or mul-
tiple regression, report all effects. Report the results for
each effect, including F, df, and MSE, so that the reader
can calculate effect sizes other than those reported.

4. Take steps to aid the reader to understand and interpret
the size of the more important effects. Use statistics such
as the PS and Cohen’s U, or Goodman—Kruskal’s lambda
to help the reader conceptualize the size of the effect.

5. Always discuss the practical, clinical, or theoretical im-
plications of the more important of the effect sizes ob-
tained.
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Appendix

A Brief Introduction to Power Analysis

When planning research, it is sensible to ensure that the research
has the power to detect the effect(s) under consideration (e.g., Ellis,
2010; Keppel & Wickens, 2004). The anticipated size of the effect
may be estimated from previous research, or an effect size may be
chosen that is the smallest effect that would be meaningful in some
practical sense. It is also good practice to define the degree of power
required, that is, to set an acceptable probability of Type II errors.
Although the limit for Type I errors is usually set to .05, the limit for
Type II errors is often set to be somewhat higher; if the limit for Type
IT errors is set to .20, then power would need to be .80, a commonly
recommended value (Ellis, 2010). Having identified an anticipated
effect size and the power requirements, it is easy to determine the
number of participants required. Table Al is adapted from Cohen
(1988); the intersection of the selected effect size and power level
shows the number of participants required in each group for both
two-tailed and one-tailed ¢ tests at a significance threshold of @ = .05.
Three levels of effect size are included in this brief summary: small
(d = .2), medium (d = .5), and large (d = .8); Cohen’s tables provide
data for a fuller range of effect sizes. If the planned research will
require too many participants to be practicable, then it may be worth-
while to consider ways of reducing error variability, thereby increas-
ing the anticipated effect size.

When an experiment has led to a nonsignificant result, it is inap-
propriate to post hoc calculate the power of the study (Ellis, 2010;
Hoenig & Heisey, 2001). However, the experiment can provide an
estimate of the population effect size, although this may not be very
accurate if the sample size was small. Using the estimate of the
population effect size, future research can be planned with respect to
the sample size required to achieve a reasonable level of power.

Table Al

Number of Participants per Group Required for t Tests to
Achieve Selected Levels of Power, Based on the Anticipated Size
of the Effect

Effect size for one-tailed test Effect size for two-tailed test

Small  Medium  Large Small  Medium  Large

Power (d=.2) (d=.5) d=.8) d=2) d=5 (d=.8)
25 48 8 4 84 14 6
.50 136 22 9 193 32 13
.60 181 30 12 246 40 16
.67 216 35 14 287 47 19
.70 236 38 15 310 50 20
5 270 44 18 348 57 23
.80 310 50 20 393 64 26
.85 360 58 23 450 73 29
90 429 69 27 526 85 34
95 542 87 35 651 105 42

Note.  Where power is .8, there is a 20% chance of failing to detect an
effect. Adapted from Statistical Power Analysis for the Behavioral Sci-
ences (2nd ed., pp. 54-55), by J. Cohen, 1988, Hillsdale, NJ: Erlbaum.
Copyright 1988 by Taylor & Francis.

Table A2
Power Present Based on the Number of Groups, Number of
Participants per Group, and Meaningful or Expected Effect Size

Effect size

Participants Small Medium Large
per group (d = .2;m*>=.01) (d=.57m"=.06) (d=.8n"=.14)
Two groups
10 .07 18 40
15 .08 .26 57
25 .10 42 80
40 14 .61 95
80 24 .89 1.00
Three groups
10 07 .20 45
15 08 .29 64
25 10 47 87
40 15 .68 98
80 27 .94 1.00
Four groups
07 21 51
15 08 32 71
25 11 .53 93
40 16 .76 99
80 29 97 1.00
Five groups
0 07 .23 56
15 09 .36 78
25 12 .58 .96
40 17 .81 1.00
80 32 .99 1.00

Note. These figures apply to analysis of variance and to two-tailed t tests.
Where power is .3, there is a 70% chance of failing to detect an effect.
Adapted from Statistical Power Analysis for the Behavioral Sciences (2nd
ed., pp. 311-318), by J. Cohen, 1988, Hillsdale, NJ: Erlbaum. Copyright
1988 by Taylor & Francis. Cohen’s tables report another effect size
estimate, f, which is rarely reported and is not addressed in this article. The
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relationship between f and m? is f =

Table A2 is also adapted from Cohen (1988); it lists power
levels for small, medium, and large effect sizes given some num-
ber of groups and participants per group. These values apply to
ANOVAs and two-tailed ¢ tests.

Power may not be the sole consideration when estimating the
number of participants required. Sample means and variability
provide estimates of the population parameters; the accuracy or
precision of those estimates is a function of the sample size. It may
be as useful or more useful in some cases to estimate the sample
size required for a desired degree of accuracy in parameter esti-
mation based on defining the maximum acceptable confidence
interval width. Maxwell, Kelley, and Rausch (2008) provided an
excellent discussion of power and accuracy in parameter estima-
tion; practical guidance is available there and in other articles (e.g.,
Kelley & Rausch, 2006) and texts (Cumming, 2012).
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Correction to Fritz et al. (2011)

The article “Effect Size Estimates: Current Use, Calculations, and Interpretation,” by Catherine O.
Fritz, Peter E. Morris, and Jennifer J. Richler (Journal of Experimental Psychology: General,
Advance online publication. August 8, 2011. doi:10.1037/a0024338) contained a production-related
error. The sixth equation under “Effect Sizes Specific to Comparing Two Conditions” should have

had a plus sign rather than a minus sign in the denominator. All versions of this article have been
corrected.
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