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Although dissatisfaction with the limitations associated with tests for statistical
significance has been growing for several decades, applied researchers have contin-
ued to rely almost exclusively on these indicators of effect when reporting their
findings. To encourage an increased use of alternative measures of effect, the present
paper discusses several measures of effect size that might be used in group compari-
son studies involving univariate and/or multivariate models. For the methods dis-
cussed, formulas are presented and data from an experimental study are used to
demonstrate the application and interpretation of these indices. The paper concludes
with some cautionary notes on the limitations associated with these measures of
effect size.  2000 Academic Press

For more than three decades data analysts have been recommending to
researchers in the behavioral sciences that, in addition to a test for statistical
significance, an effect size measure should also be reported with their find-
ings (Cohen, 1965; Hays, 1963). The rationale for this recommendation rests
on the fact that statistical significance does not imply meaningfulness. ‘‘Sig-
nificance’’ based on a statistical test provides information on the likelihood
of finding the observed relationship by chance alone (sampling error). While
statistical ‘‘significance’’ helps to protect the researcher from interpreting
an apparently large observed difference as meaning a true difference between
populations when sample sizes are small, it does not protect the researcher
from interpreting a trivially small observed difference as meaningful when
sample sizes are large. Small differences can be statistically ‘‘significant’’
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simply because of a large sample size. This has prompted some to argue that
tests of statistical significance are not generally useful (Carver, 1978, 1993;
Cohen, 1994; Hunter, 1997; Kirk, 1996; Schmidt, 1992). Rather, these critics
of significance testing argue that confidence intervals and measures of effect
size should be the focal point of research findings. Among the more vocal
advocates for the reporting of effect size measures has been Thompson
(1996, 1997, 1999a, 1999b), who has been critical of the wording used in
Publication Manual of the American Psychological Association, fourth edi-
tion (American Psychological Association, 1994), which encourages, rather
than requires, authors to report effect size information (p. 18). While this
view of mandating effect size measures is not shared by all methodologists
(e.g., Frick, 1999; Levin & Robinson, 1999; Robinson & Levin, 1997), the
long-anticipated report from APA Task Force on Statistical Inference recom-
mends that researchers ‘‘always report effect size measures for primary out-
comes’’ (Wilkinson et al., 1999, p. 599).

Over the years, several papers have been published tracing the historical
developments of effect size measures (Dwyer, 1974; Glass & Hakstian,
1969; Maxwell, Camp, & Arvey, 1981; Richardson, 1996), suggesting alter-
native indices (Friedman, 1968; McGraw & Wong, 1992; Rosenthal & Ru-
bin, 1982), and offering cautionary notes on the interpretation of these indi-
ces (Mitchell & Hartmann, 1981; Muray & Dosser, 1987; O’Grady, 1982;
Sechrest & Yeaton, 1982; Strube, 1988). Textbooks on statistical methods
have also included procedures for computing a number of indices of effect
(e.g., Huberty, 1994; Keppel, 1991; Maxwell & Delaney, 1990; Stevens,
1996). In spite of an abundance of references, applied researchers have ap-
parently not accepted the call for the use of effect size measures (Keselman
et al., 1998; McNamara, 1978).

The purpose of the present paper is to present in a single source the compu-
tational formulas that can be used for most basic designs involving at least
one qualitative factor (grouping factor) used by applied researchers and to
apply these formulas using data from a published article. The statistical anal-
yses that are included are contrasts, omnibus single- and multifactor analysis
of variance with fixed and random factors, multivariate analysis of variance,
univariate and multivariate analysis of covariance, and repeated measures
and split-plot analysis of variance. Research designs involving only quantita-
tive factors (regression, correlation) and qualitative response variables (con-
tingency tables, discriminant analysis, and logistic regression) are not consid-
ered.

CONTEXT

To demonstrate the application of various measures of effect size, data
from an experimental study reported by Bauman, Seifert-Kessell, and Jones
(1992) are used. The researchers used a randomized groups pretest–posttest
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TABLE 1
Treatment Means and Standard Deviations

Treatment

TA DRTA DRA

Pretest Mean 9.14 9.73 10.50
EDT SD 3.34 2.69 2.97
Pretest Mean 4.95 5.09 5.27
Strategy SD 1.86 1.99 2.76
Posttest Mean 7.77 9.77 6.68
EDT SD 3.93 2.72 2.77
Posttest Mean 8.36 6.22 5.55
Strategy SD 2.90 2.09 2.04
Posttest Mean 43.45 46.64 42.05
DRP SD 7.86 7.64 6.62

Note. TA 5 Talk Aloud; DRTA 5 Directed Read-
ing–Think Aloud; DRA 5 Directed Reading Ac-
tivity.

design and were interested in comparing the effectiveness of three interven-
tions designed to affect reading comprehension skills of fourth-grade stu-
dents. The first intervention taught students to use a Talk-Aloud (TA) ap-
proach to implement several comprehension monitoring strategies. The
second intervention used a Directed Reading–Thinking Activity (DRTA).
The third intervention was a control condition using a Directed Reading Ac-
tivity (DRA). From the original sample, one student in the TA and one stu-
dent in the DRTA conditions dropped out of the study (for reasons unrelated
to the program), leaving 22 students in each of the three conditions (N 5
66). Two pretest measures were administered before the interventions began
and three posttest measures were administered following the termination of
the interventions. The raw data for the study are reported in the Appendix
and the group means and standard deviations for the five measures are pre-
sented in Table 1. The first pretest measure, an error detection task (EDT),
required students to identify 16 sentences that did not make sense within the
context of an entire reading passage. The second pretest was a 15-item inven-
tory asking students what strategies they used to understand the reading pas-
sage. The first posttest was similar to the first pretest but with a different
reading passage. The inappropriate sentences in the first posttest were inten-
tionally made more difficult to detect to avoid a ceiling effect. The second
posttest was an 18-item inventory similar to the second pretest. The third
posttest was the Degrees of Reading Power (DRP) test (1986), a standardized
reading test designed to assess student reading comprehension.

Two orthogonal contrasts were of particular interest to the researchers.
The researchers were interested in comparing (a) the two monitoring strate-
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gies TA and DRTA with the control condition DRA and (b) TA with DRTA.
The researchers analyzed the data using a multivariate analysis of covariance
using posttest EDT and DRP as the outcomes and the two pretests as the
covariates. Following an omnibus test that was statistically significant at the
.05 level, the authors reported that both contrasts were statistically significant
at the .05 level for the EDT posttest, and the second contrast was statistically
significant at the .05 level for the EDT posttest but not the DRP posttest.
For the Strategy posttest both contrasts were statistically significant at the
.05 level. Measures of effect size were not reported for any of the statistical
tests.

In the sections that follow we will use that data collected by Bauman et
al. (1992) to demonstrate a variety of effect size indicators for several designs
and data analyses. We will review both standardized mean difference effect
sizes and proportion of variance effect sizes. For each type of effect size we
will review univariate and multivariate approaches. We will conclude with
some cautions regarding the use and interpretation of the measures of effect.

THE STANDARDIZED MEAN DIFFERENCE EFFECT SIZE

In educational and psychological research an effect of interest can often
be expressed as a contrast of means, that is, as a weighted sum of means in
which the weights sum to zero. If there are J cells in a design, a contrast
can be written as

ψ 5 c1 µ1 1 ⋅ ⋅ ⋅ 1 cJ µJ ,

where

c1 1 ⋅ ⋅ ⋅ 1 cJ 5 0.

Perhaps the most common contrast in educational psychology is the mean
difference

µ j 2 µj ′,

where j and j ′ indicate two different means.
A problem with using a contrast to communicate the size of the effect is

that a contrast is scale dependent: Its magnitude is expressed in terms of the
scale of measurement of the variable for which the means are computed. A
standardized mean difference is an attempt to overcome the scale dependence
of a contrast. In the following we present both univariate and multivariate
standardized mean differences. A univariate standardized mean difference
is used when interest focuses on a contrast for just one outcome variable.
When interest is focused on a contrast applied to several outcome variables
a multivariate standardized mean difference can be used.
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Univariate Standardized Mean Difference

Between-Subjects Designs

Single-factor designs. In Bauman et al. (1992) two contrasts were of spe-
cific interest. The complex contrast examined the effect of instruction by
comparing the average of TA and DRTA with DRA:

ψ1 5
1
2

(µDRTA 1 µTA) 2 µDRA.

The pairwise contrast examined the intensity of the instruction by comparing
TA with DRTA:

ψ2 5 µDRTA 2 µTA.

Using only performance on posttest EDT, a statistical difference at the .05
level was obtained for each contrast (t(63) 5 22.51, p 8 .015, and t(63) 5
2.08, p 8 .042, for the first and second contrasts, respectively).

One approach to describing the magnitude of an effect is to estimate the
standardized mean difference. Expressing the contrast in standard deviation
units standardizes a contrast:

δ 5
ψ
σ

.

The quantity δ is called a standardized mean difference. When two means
are compared the estimate of δ is often called Cohen’s d. To estimate δ,
sample means are used to estimate the population means µj. The quantity σ
can be estimated in one of three ways presented in Text Box 1. In the follow-
ing we refer to the estimate of σ as the standardizer.

A pooled standard deviation is a square root of a pooled variance. In Op-
tion C the pooled variance is

S2
pooled 5

(n1 2 1)S2
1 1 ⋅ ⋅ ⋅ 1 (nJ 2 1)S2

J

(n1 2 1) 1 ⋅ ⋅ ⋅ 1 (nJ 2 1)

Text Box 1

Alternative Methods for Computing Standardizers

A. The standard deviation of one of the groups, perhaps most typically the control
group (Glass, 1976).

B. The pooled standard deviation of the group being compared (Cohen, 1969).
C. The pooled standard deviation for all of the cells in the design (Hedges, 1981).
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and is equal to the error mean square (MSE) from a one-way analysis of
variance of the data. If Option B is used, only the sample sizes and variances
for the groups included in the contrast are included in the calculation of
S2

pooled. An argument against Option B, presented in Hedges (1981) but attrib-
uted to Glass (1976), concerns the possibility that two estimated contrasts
that are identical in size will have unequal values for δ̂ if Option B is used.
If the evidence suggests that all J variances estimate the same population
variance (i.e., the variances meet the equality of variance assumption) then
Option C is the best option.

If the variance equality assumption is not met then the standard deviation
for one of the J groups should be used as the standardizer. In the context of
comparing an experimental and a control treatment, Glass, McGraw, and
Smith (1981) recommended using the standard deviation for the control
group, but pointed out that the experimental group standard deviation could
be used. Glass et al. present an example in which YE 5 52, SE 5 2, YC 5
50, and SC 5 10. The estimated contrast is

ψ̂ 5 (52 2 50) 5 2.

If the contrast is standardized by using SE 5 2, the standardized mean differ-
ence is

δ̂ 5
2
2

5 1.00.

If SC 5 10 is used the standardized mean difference is

δ̂ 5
2

10
5 .20.

Both figures are correct. As Glass et al. point out, ‘‘These facts are not contra-
dictory; they are two distinct features of a finding which cannot be expressed
by one number’’ (p. 107). Thus, when the equality of variance assumption
is violated, the researcher will have to select one standard deviation that
expresses the contrast on the scale the researcher thinks is most important,
or will have to report the mean difference standardized by several standard
deviations and discuss the implications of these figures.

In Table 2 each contrast [1/2(µDRTA 1 µTA) 2 µDRA and (µDRTA 2 µTA)]
for the EDT posttest was standardized by using each of the three options.
When option A was used the standard deviation for the DRA group was
used. The DRA treatment was the control treatment in Bauman et al. (1992).
The effect sizes only differ slightly depending on the estimate used for σ.

Hedges (1981) pointed out that the standardized mean difference is a bi-
ased estimator of δ and recommended that the standardized mean difference
be multiplied by a correction factor equaling 1 2 3/(4df 2 1), where df is
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TABLE 2
Univariate Standardized Mean Differences

Contrast

Standardized
mean difference

1
2

(µDRTA 1 µTA) 2 µDRA (µDRTA 2 µTA)

δ̂ 5
ψ̂
Sc

a 2.09
2.769

5 .755
2.00
2.769

5 .722

δ̂ 5
ψ̂

Spooled

b 2.09
3.189

5 .655
2.00
3.397

5 .589

δ̂ 5
ψ̂

Spooled

c 2.09
3.189

5 .655
2.00
3.189

5 .627

a Sc is the standard deviation of the control group.
b Spooled is the pooled standard deviation of the groups involved in the contrast.
c Spooled is the pooled standard deviation for all three groups.

the degrees of freedom for the standard deviation used in the denominator
of the estimate of the effect size.

Although there are few guidelines for interpreting the magnitude of the
standardized mean difference, Cohen (1988) recommended standardized
mean differences of .2, .5, and .8 for small, medium, and large effects. Using
these guidelines, the results indicate medium effects for both contrasts. Co-
hen (1988, pp. 21–23) also suggested that if normality could be assumed
then the percent of overlap between the populations could also be used to
provide a sense of meaningfulness for an effect. In the present example the
difference between TA and DRTA provides a standardized mean difference
of .63; using the standard normal Z distribution this difference would indicate
that 50% of the DRTA group performed better than approximately 73% of
the TA group. See Fig. 1.

Regardless of whether a contrast is standardized by using a standard devia-
tion for a single group or a pooled standard deviation, when the factor is a
manipulated factor and participants are randomly assigned to levels, the stan-
dard deviation measures the extent of variation in the full range of talent.
This is not true when the factor is an individual difference factor. For exam-
ple, consider a gender study and assume the standard deviations for males
and females are similar enough to justify using Spooled. This standard deviation
measures the extent of variation for males alone and for females alone and
therefore, if there is a gender effect, measures the extent of variation in a
partial range of talent. The standard deviation for the full range of talent is
the total standard deviation

S total 5 √(N 2 2)S2
pooled 1 SSgender

N 2 1
,
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FIG. 1. Effect size as the percent of overlap.

which will be larger than Spooled. It would have been salutary if S total had been
used historically to standardize mean differences in studies of individual dif-
ference factors. However, the practice of using one of Options A to C is
now so firmly entrenched that it is probably a bad idea to change practice.
However, the practice has important implications for standardizing mean
differences in multifactor designs that include individual difference factors.

Multifactor designs. In a multifactor design, the factors can be manipu-
lated factors, individual difference factors, or a combination of the two types
of factors. If all factors are manipulated factors, no new issues arise in select-
ing the standardizer and the standardizer is calculated by (a) computing cell
variances for a cross-classification in which all manipulated factors are in-
cluded and (b) calculating the standard deviation by using one of the options
presented in Text Box 1. If Option C is used the pooled variance is equal
to the MSE for the design.

If one or more of the factors is an individual difference factor, additional
issues arise about the calculation of the standardizer. We will discuss these
issues in the context of two-factor designs. The issues concern comparability
of standardized mean differences across different designs.

If one factor is a manipulated factor and one factor is an individual differ-
ence factor, the issue that arises is whether the standardizer should be calcu-
lated by ignoring or controlling the individual difference factor. To illustrate
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TABLE 3
Means (and Standard Deviations) for Posttest EDT

by Treatment and Ability Group

Treatment

Ability TA DRTA DRA

Low 5.18 8.64 5.45 6.42
(2.40) (2.38) (2.30) (2.78)

High 10.36 10.91 7.91 9.73
(3.44) (2.66) (2.74) (3.16)
7.77 9.77 6.68 8.08

(3.93) (2.72) (2.77) (3.93)

how the resolution of the issue affects results we separated each of the treat-
ment groups in the Bauman et al. (1992) study into two subgroups. Within
each treatment group, students above the group’s median on the pretest EDT
were assigned to the high-ability group; the other students were assigned to
the low-ability group. Thus we have created a 2 (Ability) 3 3 (Treatment)
between-subjects design. (In practice, when an ability factor is introduced
into a design, participants should be classified into ability groups before as-
signing them to treatments. Our method of creating ability groups is for illus-
trative purposes only.) In the Appendix, the first 11 scores in each treatment
group are for the low-ability students. Means and standard deviations are
presented in Table 3.

Suppose we want to compare DRTA and TA. We have two means for
TA (YTA, High and YTA, Low) and two means for DRTA (YDRTA, High and YDRTA, Low).
The contrast of interest1 is

1 In this example we assume (a) each cell mean is computed as an arithmetic average of
the data in the cell and (b) it is appropriate to compute the DRTA–TA contrast by averaging
the DRTA–TA cell mean differences over the levels of the individual difference factor. The
use of (a) is not optimal if there is no interaction between the treatment factor and the individual
difference factor. When there is no interaction, the cell means can be estimated by using a
linear model that includes only the main effects of the treatment and individual difference
factor; the sampling variability of the cell mean differences can be improved by using these
cell mean estimates. Using the average described in (b) assumes we want to control for the
individual difference factor when we define the DRTA–TA contrast. This assumption will
not be correct in all situations. For example, suppose the study involves Black and White
students rather than high- and low-ability students. If we do not want to control ethnic back-
ground, the contrast should be calculated by using

pB(YDRTA,B 2 YTA,B) 1 pW(YDRTA,W 2 YTA,W),

where pB and pW are the proportion of students who are Black and White, respectively, in the
population of interest. In the event of an Ethnic Group 3 DRTA–TA effect, this contrast can
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1
2

(YDRTA, High 1 YDRTA, Low) 2
1
2

(YTA, High 1 YTA, Low)

5
1
2

(10.91 1 8.64) 2
1
2

(10.36 1 5.18)

5 2.00,

and is equivalent to a contrast of the marginal means for DRTA and TA.
Because the cell frequencies are all equal, the DRTA–TA contrast in the
two-factor design is equal to the DRTA–TA contrast in the single-factor
design.

To standardize the mean difference we initially calculate the standardizer
from the variance pooled over the six cells of the design (i.e., 7.188). The
square root of this pooled variance is 2.681 and the standardized mean differ-
ence is

δ̂ 5
2.00
2.681

5 .75.

In the single-factor design the pooled standard deviation was 3.189 and the
standardized mean difference was .63. The .75 versus .63 difference arises
because in the two-factor design, ability is controlled when the 2.681 stan-
dard deviation is calculated. In the single-factor design ability is ignored
when the 3.189 standard deviation is calculated. Thus the two standardized
mean differences are not comparable. The lack of comparability is extremely
important. Suppose two investigators compare the same treatments. If the
first uses a single-factor design and the second uses a two-factor design with
an individual difference factor as the second factor, standardized mean differ-
ences for the treatment factor will tend to be larger for the second investiga-
tor. Because the difference in the sizes of the standardized mean difference
reflects the design and not the treatments, the differences contribute confu-
sion and not clarity to the literature. An indication of the magnitude of the
problem introduced by ignoring design factors when estimating effect size
was illustrated in Morris and DeShon (1997). Depending on the sample size
and effect sizes associated with the individual difference and interaction fac-
tors in a two-factor design, the effect size estimated for the manipulated
factor can vary from trivial to quite large.

The standard deviation (2.681) in the two-factor design measures the ex-
tent of variation in a partial range of talent and is smaller than the standard

be quite different than

1
2

(YDRTA,B 2 YTA,B) 1
1
2

(YDRTA,W 2 YTA,W).
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Text Box 2

The Manipulated Factors Method

1. Compute cell variances for a cross-classification that (a) includes all manipulated
factors and (b) excludes all individual difference factors, and

2. Calculate the standardizer by using one of the options presented in Text Box 1.

deviation for the full range of talent. The latter standard deviation is esti-
mated in the single-factor design. We think the standardizer should reflect
the full range of talent and consequently think that the standard deviation
from the two-factor design is an incorrect standardizer. Therefore, when (a)
some factors are manipulated factors and some are individual difference fac-
tors and (b) the contrast of interest is a contrast of levels of a manipulated
factor, we recommend the procedure described in Text Box 2 for calculating
the standardizer.2 Thus instead of using 2.681, we would recommend using
one of the standardizers in Table 2. Note that with this method, if Option C
in Text Box 1 is used, S2

pooled is not the MSE for the full design because the
individual difference factors are excluded from the cross-classification.

Glass et al. (1981) agree with this recommendation when the contrast is
averaged over all levels of the individual difference factor, as it was in our
example. However, suppose a contrast of levels of the manipulated factor
involves only one level of the individual difference factor. For example sup-
pose we are interested in the contrast of DRTA and TA for high-ability stu-
dents only:

YDRTA, High 2 YTA, High 5 10.91 2 10.36 5 .55.

Based on the example on page 119, Glass et al. would recommend the pooled
standard deviation calculated from the two-factor design (2.681) as the stan-
dardizer. We disagree with their recommendation. Because we want the
DRTA–TA standardized mean difference for high-ability students to be
comparable to the DRTA–TA standardized mean difference for the entire
sample, we recommend calculating the standardizer by using the manipu-
lated factors method. In this example the manipulated factors method would

2 If the researcher plans to standardize by using the standard deviation pooled over all cells
obtained by a cross-classification of all manipulated factors (i.e., Option C in Text Box 1),
the standard deviation can be calculated from the results in the original analysis by pooling the
error variance and the variances of all main and interaction effects that involve the individual
difference factors and taking the square root. The pooling is accomplished by adding the sums
of squares for error and the sums of squares of all sources of variance involving the individual
differences factors (main effect and interaction) and dividing by the sum of the degrees of
freedom for all the pooled sources of variance. We present the procedure in Text Box 2 because
it allows the use of Options A and B as well as Option C in Text Box 1.
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Text Box 3

The Manipulated Factors and Individual Difference Method

1. Compute cell variances for a cross-classification in which (a) all manipulated factors
are included, (b) the individual difference factor involved in the contrast is included, and
(c) all other individual difference factors are excluded, and

2. Calculate the standardizer by using one of the options presented in Text Box 1.

result in using one of the standardizers in Table 2. Using Option C in Text
Box 1, the standardizer would equal 3.189.

Suppose we are interested in comparing the DRTA–TA difference for
high-and low-ability students. This is an example of an interaction contrast.
The contrast of interest is

(YDRTA, High 2 YTA, High) 2 (YDRTA, Low 2 YTA, Low)

5 (10.91 2 10.36) 2 (8.64 2 5.18)

5 22.87.

Again we recommend calculating the standardizer by using the manipulated
factor method, which would result in using one of the standardizers in
Table 2.

Another possible contrast is a contrast of the levels of the individual differ-
ence factor. For example the High–Low ability contrast might be of interest:

1
3

(YDRTA, High 1 YTA, High 1 YDRA, High) 2
1
3

(YDRTA, Low 1 YTA, Low 1 YDRA, Low)

5
1
3

(10.91 1 10.36 1 7.91) 2
1
3

(8.64 1 5.18 1 5.45)

5 3.31.

To standardize a contrast of levels of an individual difference factor, we
recommend the procedure described in Text Box 3 for calculating the stan-
dardizer. The standardizer computed using this method will be comparable
to the standardizer that would have been used if the individual difference
factor had been the only factor in the design. In the present example the
cross-classification described in Point 1 is the cross-classification of the treat-
ment factor and the ability factor. Thus the variances in Point 1 are the
squares of the standard deviations in Table 3, and if Option C in text Box 1
were used the standardizer would be 2.681. Note that with this method, if
the design had two or more individual difference factors and Option C in
Text Box 1 were used, S2

pooled would not be the MSE for the full design because
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all but one of the individual difference factors are excluded from the cross-
classification described in Point 1.

To illustrate selecting a standardizer when all factors are individual differ-
ence factors consider an example in which one factor is ethnic background
(Majority and Minority) and one factor is gender. The gender contrast is

1
2

(YM, Maj 1 YM, Min) 2
1
2

(YF, Maj 1 YF, Min).

If we calculate the standardizer by using the variances obtained from the
two-way analysis of the data, the standardizer controls for both gender and
ethnic background. In a single-factor gender study, the standardizer would
control only for gender. We recommend using a standardizer that is compara-
ble to the one used in the one-factor design: Calculate the standard deviation
by treating gender as the only factor in the design. A parallel recommenda-
tion applies to the ethnic group contrast

1
2

(YM, Maj 1 YF, Maj) 2
1
2

(YM, Min 1 YF, Min).

Calculate the standard deviation by treating ethnic background as the only
factor in the design. The general recommendation for computing a standard-
izer for a design in which all factors are individual difference factors is to

1. Compute variances for a design in which the individual difference factor
involved in the contrast is the only factor, and

2. Calculate the standardizer by using one of the options presented in Text
Box 1. If the design that includes all individual differences factors is a bal-
anced design and if Option C is used, the pooled variance can obtained by
using

Spooled 5 √SS total 2 SS id

N 2 J
,

where SS id is the sums of squares for the individual differences factor of
interest, N is the total sample size, and J is the number of levels of the
individual differences factor.

Between-Subjects Designs with Covariates

Because of limited resources or access to populations of interest, many
research studies are conducted with a small sample of participants. As a
consequence of a small sample size statistical power (the likelihood of de-
tecting true differences) can be low. Bauman et al. (1992), for example, had
access to only 68 participants, with only 66 individuals completing the study.
One strategy that can be used to increase statistical power is to obtain addi-
tional information, prior to the beginning the intervention, about the partici-
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pants that is related to the outcome measures. Using these data, variation in
the outcome measure (error variance) can be reduced by using analysis of
covariance. Bauman et al. used this strategy in their investigation. Two pre-
test measures were obtained on each participant before the treatments were
begun and their hypotheses about contrasts were tested using univariate and
multivariate analyses of covariance. In the univariate analysis, both contrasts
were statistically significant at the .05 level (Fψ1

(1, 61) 5 20.14, p 8 .001;
Fψ2

(1, 61) 5 4.90, p 8 .031).
When analysis of covariance is used the means in the contrast should be

estimated by adjusted cell means rather than the posttest cell means. Using
the EDT and Strategy pretests as covariates and posttest EDT as the outcome
measure the adjusted means were 8.21, 9.81, and 6.19 for the TA, DRTA,
and DRA interventions, respectively. The estimate of the contrast of TA and
DRTA versus DRA is

1
2

(8.22 1 9.81) 2 6.19

5 2.83.

The contrast for unadjusted posttest means was 2.09. If participants have
been randomly assigned to groups the contrast of the adjusted means and
the contrast of the unadjusted means will typically be similar because random
assignment tends to result in small mean differences on the covariates. When
participants are not randomly assigned to groups the difference between the
two contrasts can be large. The standardizer should be calculated using the
manipulated factors method (Text Box 2) so that it estimates the standard
deviation ignoring the covariates. in the present example the only manipu-
lated factor is the treatment factor. Therefore the standardizer is selected
from one of the standard deviations used in Table 2. Using the standard
deviation pooled over the three groups the standardized mean difference is

δ̂ 5
2.83
3.19

5 .89.

The standardizer used here is equivalent to the standard deviation often used
by meta-analysts (e.g., Glass et al., 1981, p. 119, Eq. 5.19). This standardizer
corrects the adjusted mean square error in ANCOVA as a function of the
error degrees of freedom and the pooled within-group correlation between
the covariate and dependent variables. We prefer our approach because it is
simpler to compute and will help practitioners to understand the meaning of
the effect size measure for these designs.
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Within-Subjects Designs

In many research settings investigators are interested in comparing related
or dependent samples. Two common contexts in which related samples are
compared are when (a) participants are observed at several points in time
and (b) participants are observed under several different treatment condi-
tions. When the repeated measures on participants are to be compared the
study is referred to as a within-subjects design.

In the Bauman et al. (1992) study, participants were observed at two points
in time—two pretests and three posttests were given. We use the data on the
EDT tasks to illustrate application of the formulas to a single-factor within-
subjects design. Pretest EDT scores (Ypre 5 9.79 and Spre 5 3.02) were com-
pared with posttest EDT scores (Ypost 5 8.08 and Spost 5 3.39). The observed
difference was statistically significant at the .05 level (F(1, 65) 5 21.40,
p 8 .001). Overall the test scores declined but it must be recalled that the
reading passage used for the posttest EDT was chosen to be more difficult
than the passage used for the pretest EDT to avoid a ceiling effect. When
the design has a single factor, the formulas presented for the single-factor
between-subjects design can be used to calculate the standardizer. For the
current example we pooled variances 3.022 and 3.392 to obtain the pooled
standard deviation 3.21. Thus we used Option B in Text Box 1, which is
equivalent to Option C because there are only two time points. Option A
could also have been used; the pretest standard deviation would most likely
be used in Option A. The standardized mean difference is

δ̂ 5
8.08 2 9.79

3.21

5 2.53.

It is important to note that although the repeated measures are correlated,
the standardizer can be obtained by treating the cell variances as independent
estimates of the population variances (Dunlap, Cortina, Vaslow, & Burke,
1996). Option B is consistent with the intent of the approach recommended
by Glass et al. (1981, p. 120) for calculating the standardizer.3 However, to
the degree that the cell variances are unequal, the two approaches will yield
different numerical results. As with the analysis of covariance procedure
discussed above, we believe our approach is simpler to compute and will
help researchers understand the true meaning of the effect size measure.

3 There are typographical errors in Eq. 5.25 in Glass, McGraw, and Smith (1981). Equation
5.25 should be

√nsd̄

√2(1 2 rEC)
.
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TABLE 4
Means (and Standard Deviations) by Noise

and Degree

Offset degree

Noise 0 4 8

Absent 462 (56.92) 510 (86.02) 528 (78.99)
Present 492 (88.54) 660 (109.54) 761 (116.79)

In our discussion of multifactor between-subjects designs we pointed out
the complications that arise due to individual difference factors. These com-
plications do not typically arise in within-subjects designs because typically
individual difference factors are not used in these designs. Consequently
standardized mean differences in multifactor within-subjects designs can be
calculated by using the manipulated factors method described in Text Box 2.
Maxwell and Delaney (1990, p. 497) presented synthetic data for a design
with two within-subjects factors: The letters T and I are displayed on a com-
puter screen to n 5 10 participants. Participants’ reaction times were col-
lected when the letter was embedded either in a display of other letters (Noise
Present) or displayed alone (Noise Absent). The letters were displayed at
the center of the screen, 4° off center, or 8° off center. Means and standard
deviations are presented in Table 4.

Suppose we are interested in a contrast of offset versus no offset for the
noise absent condition. The contrast is

1
2

(Y4, NA 1 Y8, NA) 2 Y0, NA

5
1
2

(510 1 528) 2 462

5 57.

Inspecting the standard deviations for the three conditions indicates some
difference among the standard deviations. Considering the small sample size,
the differences among the standard deviations may be due to sampling error.
Nevertheless, the fact that the standard deviations increase with the degree
of offset (and with the presence of noise) suggests the differences among
the standard deviations are systematic. Consequently, we will use the control
standard deviation (i.e., the standard deviation for the noise absent, and no
offset cell) to standardize the mean difference:

δ̂ 5
57

56.92
5 1.00.
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Another contrast that might be of interest is the difference, in the linear trend
in the means as a function of offset, between noise absent and noise present.
For noise present the linear trend for degree is

Y8, NP 2 Y0, NP

and for noise absent the linear trend for degree is

Y8, NA 2 Y0, NA.

Thus the contrast of interest is

(Y8, NA 2 Y0, NA) 2 Y8, NP 2 Y0, NP)

5 (761 2 492) 2 (528 2 462)

5 203

and the standardized mean difference is

δ̂ 5
203

56.92

5 3.57.

Split-Plot Designs

In a split-plot design there are both between-subjects and within-subjects
factors. The within-subject factors are typically not individual difference fac-
tors. The between-subjects factors can be either manipulated factors or indi-
vidual difference factors. If all the between-subjects factors are manipulated
factors the standardizer is calculated by using the manipulated factors
method (see Text Box 2). If one or more of the between-subjects factors is
an individual difference factor, the procedure for calculating the standardizer
depends on whether the levels of a manipulated factor or the levels of an
individual difference factor are being compared. If the levels of a manipu-
lated factor are to be compared, we recommend the manipulated factors
method. If the levels of an individual difference factor are being compared,
we recommend the manipulated and individual difference factor method (see
Text Box 3).

Using the EDT pretest and posttest as the within-subject factors and the
three interventions (TA, DRTA, and DRA) as the between-subjects factor,
the Bauman et al. (1992) study can be used to illustrate a split-plot design.
A contrast of interest would be a comparison of the average of mean change
for the two treatment groups (TA and DRTA) to mean change for the control
group (DRA):
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1
2

(YDRTA, post 2 YDRTA, pre) 1
1
2

(YTA, post 2 YTA, pre) 2 (YDRA, post 2 YDRA, pre)

1
2

(9.77 2 9.73) 1
1
2

(7.77 2 9.14) 2 (6.68 2 10.50)

5 3.16.

Because neither of the factors (Interventions and Time) is an individual dif-
ference factor, we use the manipulated factors method, which is described
in Text Box 2, to compute the standardizer. That is, the standardizer is com-
puted from the cell variances for a cross-classification of Interventions and
Time. Inspecting the standard deviations in Table 1 for the EDT pretest and
posttest, we find that the standard deviations are reasonably similar for all
six cells. Therefore, we use Option C and compute the standardizer from
the variances pooled over the six cells,

Spooled 5 √3.342 1 2.692 1 3.932 1 2.722 1 2.772

6

5 3.10,

and the standardized mean difference is

δ̂ 5
3.16
3.10

5 1.02.

Multivariate Standardized Mean Difference

The square root of the Mahalanobis D2 statistic is a multivariate standard-
ized mean difference that is analogous to the univariate standardized mean
difference calculated by using the pooled (over all groups) standard deviation
as the standardizer. In this section we explain the difference between a uni-
variate and a multivariate standardized mean difference and illustrate calcu-
lation of the multivariate standardized mean difference. We limit the presen-
tation to single-factor between-subjects designs.

Suppose a study has been conducted with two groups (A and B) and two
variables (1 and 2). Let d1 and d2 be the standardized mean differences for
the two variables, respectively:

dj 5
YAj 2 YBj

Spooled, j

, j 5 1, 2.

Then

D2 5
1

1 2 r2
12

(d2
1 1 d2

2 2 2r12 d1 d2),
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FIG. 2. Bivariate scatter plots for four groups.

where r12 is the pooled within-groups correlation between the two variables
and measures the association between the two variables within either group.
Thus Mahalanobis D2 reflects not only the univariate standardized mean dif-
ferences but also the correlation between the two variables. A general for-
mula for the multivariate standardized mean difference is

D 5 √d′R21 d,

where d is a vector of univariate standardized mean differences for the con-
trast of interest and R is the pooled within-groups correlation matrix. How-
ever, D can be computed from any of the multivariate test statistics (Roy’s
largest root, Lawley–Hotelling trace, Pillai–Bartlett trace, or Wilks’s
lambda) that can be used to test the significance of a miltivariate contrast.
Subsequently, we illustrate using Wilks’s lambda to calculate D. It should
be noted that by the appropriate choice of R, D could be made comparable
across different designs. When D is calculated from a multivariate test statis-
tic, it may not be comparable across different designs.

To understand the difference between univariate and multivariate stan-
dardized mean differences, consider the scatterplots and means depicted for
four groups (A, B, C, and D) in Fig. 2. Multivariate standardized mean differ-
ences comparing groups A and B and comparing groups C and D are to be
computed. The mean difference for variable 1 is 10 for groups A and B and
also for groups C and D. The standard deviation on variable 1 is the same
for all four groups. Therefore the univariate standardized mean difference
comparing groups A and B on variable 1 is equal to that for groups C and D.
Similarly, the univariate standardized mean difference comparing groups A
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and B on variable 2 is equal to that for groups C and D. However, Fig. 1
suggests the separation between groups C and D is larger than that between
groups A and B. By incorporating the r12 d1 d2 product term, the multivariate
standardized mean difference captures this feature of the data: For groups
A and B, r12 d1 d2 is a positive number and for groups C and D, r12 d1 d2 is a
negative number. Therefore the multivariate mean difference is larger for
groups C and D.

Bauman et al. (1992) considered the EDT posttest and the DRP posttest
to measure a single construct, reading comprehension. Consequently, they
compared the three interventions with respect to the vector outcomes of the
two posttests. Neither the TA&DRTA vs DA nor the TA vs DRTA multivari-
ate contrast was statistically significant at the .05 level (F(2, 62) 5 3.122,
p 8 .052, and F(2, 62) 5 2.130, p 8 .128, respectively). In Table 5 Wilks’s
lambda is used to compute D for the two contrasts of interest. Wilks’s lambda
is reported in SAS when multivariate contrasts are requested. SPSS (version
9.0) will only provide Wilks’s lambda for pairwise contrasts in the multivari-
ate GLM program if a separate program is run for each contrast. The square
roots of the two measures of distance are .658 and .628 and are slightly larger
than the corresponding univariate standardized mean differences reported in
Table 2.

PROPORTION OF VARIANCE EFFECT SIZES

An alternative to a standardized mean difference for describing the magni-
tude of an effect is the proportion of the variation in an outcome measure
that is explained by (shared with) the grouping variable. Many researchers
are familiar with the concept of shared variance in the context of a correlation
coefficient between two quantitative measures. In this context the squared
Pearson product moment correlation (r2

xy) provides an index of the strength
of a relationship. A proportion of variance effect size can be used to express
the size of a contrast or an omnibus effect. We review and illustrate both
uses of proportion of variance effect sizes. The standardized mean difference
is used more frequently than the proportion of variance to measure the size
of a contrast. Consequently, we limit our coverage of proportion of variance
effect sizes for contrasts to single-factor between-subjects designs.

Contrasts

Univariate approach. The magnitude of each contrast effect can be re-
ported in three ways: eta squared (Pearson, 1905), epsilon squared (Kelley,
1935), and omega squared (Hays, 1963). Eta squared is computed as the
ratio of the sum of squares for the contrast to the total sum of squares,

η̂2 5
SScontrast

SS total

,



MEASURES OF EFFECT SIZE 261

T
A

B
L

E
5

M
ul

tiv
ar

ia
te

St
an

da
rd

iz
ed

M
ea

n
D

if
fe

re
nc

e
E

ff
ec

t
Si

ze
s

C
on

tr
as

t

St
an

da
rd

iz
ed

m
ea

n
di

ff
er

en
ce

1 2
(µ

D
R

T
A

1
µ T

A
)

2
µ D

R
A

(µ
D

R
T

A
2

µ T
A
)

D
5

√df
er

ro
r(1

2
Λ

)∑
c

2 j
/n

j

Λ
√63

(1
2

.9
08

5)
3.5

2

22
1

.5
2

22
1

2
12

22
4

.9
08

5
5

.6
58

√63
(1

2
.9

35
7)
312

22
1

2
12

22
4

.9
35

7
5

.6
28



262 OLEJNIK AND ALGINA

where

SScontrast 5
(c1 Y1 1 ⋅ ⋅ ⋅ 1 cJ YJ )2

c2
1

n1

1 ⋅ ⋅ ⋅ 1
c2

J

nJ

.

Eta squared, however, overestimates the population strength of the relation-
ship and is best thought of as a descriptor of the amount of variation in the
dependent variable that is shared with the grouping variable for a particular
sample (Maxwell et al., 1981). Two corrections have been suggested. Epsilon
squared corrects the numerator of eta squared by subtracting the error mean
square from the contrast sum of squares:

ε̂2 5
SScontrast 2 MSerror

SS total

.

Omega squared further adjusts epsilon squared by adding the error mean
square groups to the total sum of squares in the denominator of epsilon
squared:

ω̂2 5
SScontrast 2 MSerror

SS total 2 MSerror

.

Generally epsilon squared and omega squared will only differ slightly (Car-
roll & Nordholm, 1975). Estimated epsilon squared and estimated omega
squared can be negative and negative estimates are typically set equal to
zero.

Recall that Bauman et al. (1992) were interested in two contrasts: TA&
DRTA versus DRA and DRTA versus TA. Table 6 presents the formulas

TABLE 6
Univariate Proportion of Variance Effect Sizes for Contrasts

Contrast

Proportion of variance
1
2

(µDRTA 1 µTA) 2 µDRA (µDRTA 2 µTA)

η̂2 5
SScontrast

SStotal

64.121
748.621

5 .086
44.000
748.621

5 .059

ε̂2 5
SScontrast 2 MSerror

SStotal

64.121 2 10.167
748.621

5 .072
44.000 2 10.167

748.621
5 .045

ω̂2 5
SScontrast 2 MSerror

SStotal 1 MSerror

64.121 2 10.167
748.621 1 10.167

5 .071
44.000 2 10.167

748.621 1 10.167
5 .045

Note. SScontrast5
(c1Y1 1 ⋅ ⋅ ⋅ 1 cjYj )2

c 2
1/n1 1 ⋅ ⋅ ⋅ 1 c 2

J /nJ

.
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and estimates for the Bauman et al. study. All three measures of association
provide similar estimates of effect for both contrasts. While there are few
guidelines for interpreting the numeric values for these effect size measures,
Cohen (1988, pp. 280–287) suggested that values of .01, .06, and .14 be
used to indicate small, medium, or large associations between the variables,
respectively. As with the standardized mean differences presented earlier,
the results presented here might be described as a medium effect size for
both contrasts.

Whether a researcher reports the effect size in terms of a mean difference
in standard deviation units or the proportion of variance shared is to some
degree arbitrary at this point in time. Both effect size measures are scale free.
That is, the scale of the dependent variable does not affect the magnitudes of
these measures. Therefore standardized effect sizes and proportions of vari-
ance can be compared for different dependent variables and different con-
trasts within the same design. If the issues of comparability are taken into
account standardized mean differences can be compared across different de-
signs. Proportion of variance effect sizes may not be comparable across dif-
ferent designs. We will return to this issue in more detail when we introduce
proportion of variance effect sizes for omnibus tests in multifactor designs.
Some might prefer the proportion of variance shared because there are de-
fined limits for this index, 0 to 1, and Rosenthal (1994) believes that this
index is easier to interpret than is a standardized mean difference. On the
other hand Rosenthal and Rubin (1979) suggested that researchers may not
recognize the meaningfulness of an effect size reported in terms of proportion
of variance explained, particularly when the proportion of variance is near
zero. Saying that 6% of the variance in an outcome is explained by the group-
ing variable indicates that 94% of the variance is not explained. For many 6%
appears trivial rather than meaningful as is implied by Cohen’s description of
the effect as a medium effect. On the other hand, a standardized mean differ-
ence has no numerical bounds and can only have meaning relative to other
standardized mean differences. A standardized mean difference can be trans-
formed into the scale of any measure that is meaningful to a researcher, an
advantage not enjoyed by a proportion of variance effect size. For example,
if two treatments resulted in a .5 standardized mean difference on the verbal
SAT, the difference is a 50-point difference on the SAT scale. A researcher
might then judge the meaning of such a difference for practical purposes.

Proportion of variance effect sizes can also be used when covariates are
incorporated into the design. Bauman et al. (1992) used an analysis of covari-
ance, with the EDT and Strategies pretests as covariates, to test the contrasts
of interest. The adjusted means for the EDT posttest were 8.22, 9.81, and
6.19 for the TA, DRTA, and DRA groups, respectively. Proportion of vari-
ance effect sizes are reported in Table 7.
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TABLE 7
Univariate Proportion of Variance Effect Sizes for Contrasts: Analysis of Covariance

Contrast

Proportion of variance
1
2

(µDRTA 1 µTA) 2 µDRA (µDRTA 2 µTA)

η̂2 5
SScontrast

SStotal

113.97
748.62

5 .152
27.72
748.62

5 .037

ω̂2 5
SScontrast 2 MSerror

SS total 1 MSerror

113.97 2 5.66
748.62 1 5.66

5 .144
27.72 2 5.66

748.621 1 5.66
5 .029

Multivariate approach. Eta squared and omega squared for the two con-
trasts of interest can be computed as a function of Wilks’s lambda and are
reported in Table 8. The N in these formulas is the total number of observa-
tions on which the means in the contrast are computed. In the present exam-
ple the complex contrast involved three groups of 22 participants each (N 5
66). The pairwise contrast involved two groups of 22 participants (N 5 44).
The multivariate eta and omega squared statistics are slightly greater than
the univariate measures of association reported in Table 2. Eta squared is
also larger than omega squared. Tatsuoka (1988, p. 97) reported that both
statistics overestimate the association in the population and offered an adjust-
ment using the number of outcome measures, the degrees of freedom, and
the sample size. Formulas and applications for the adjusted eta and omega
squared statistics are presented in Table 8. The adjusted multivariate omega
squared statistic for the pairwise contrast was negative and would be inter-
preted as indicating no relationship between group membership and the vec-
tor outcome.

Between-Subjects Univariate Designs

Single-factor designs. Even when researchers plan to test specific con-
trasts, many begin by testing the more general omnibus hypothesis of equal-
ity of several population means. To illustrate, suppose before the contrasts
on the EDT posttest were tested, an analysis of variance F test was used to
test the hypothesis that there are no differences in the population EDT post-
test means for the three treatments. Using the data in Table 1, there is suffi-
cient evidence to reject this hypothesis at the .05 level of significance (F(2,
63) 5 5.32, p 8 .008). For an omnibus hypothesis the use of a standardized
mean difference is no longer meaningful because the omnibus test simulta-
neously examines all possible contrasts. Instead a proportion of variance
effect size can be computed to provide an index for the magnitude of the
omnibus effect.
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In selecting a proportion of variance effect size a distinction needs to be
made between fixed and random factors. A factor is fixed if the levels of
the independent variable were specifically chosen by the researcher for study,
or if the levels included in the study exhaust all possible levels of the inde-
pendent variable (e.g., males and females exhaust the levels of a gender
factor). With a fixed factor, eta squared, epsilon squared, or omega squared
can be used as an effect size. The following formulas can be used to compute
these proportions of variance for any effect in any design that includes only
between-subjects factors:

η̂2 5
SSeffect

SS total

,

ε̂2 5
dfeffect(MSeffect 2 MSerror)

SS total

,

and

ω̂2 5
dfeffect(MSeffect 2 MSerror)

SS total 1 MSerror

.

A factor is considered random if the levels of the factor were selected
using a random process from an infinite number of possible levels of the
variable and the researcher wants to generalize the findings to levels of the
independent variable not included in the specific investigation. With a ran-
dom factor the purpose of the research is generally to estimate the variation
in the means of the levels of the independent variable rather than to compare
specific levels of the variable. An example of a random factor is test forms
constructed by randomly selecting items from a large pool of test items.
Variation in mean test scores associated with the test forms might be investi-
gated. With a random factor, the appropriate measure of association is the
intraclass correlation coefficient.

In the Bauman et al. (1992) study, the researchers specifically chose the
three types of intervention to investigate, so the type of intervention would
be a fixed factor. Table 9 presents eta squared, epsilon squared, and omega
squared equaling .144, .117, and .116, respectively. As noted previously, eta
squared is positively biased. Using Cohen’s guidelines, these results indicate
a large effect associated with the interventions. Levin (1967) pointed out
that effect sizes associated with the omnibus test can be misleading because
a single discrepant intervention can lead to a large effect size measure. Lev-
in’s point is demonstrated here where a large effect size is indicated for the
omnibus test but the effect size reported for the contrasts that were of particu-
lar interest were judged to be of medium magnitude. It might also be pointed
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TABLE 9
Proportion of Variance Effect Sizes for a Single-Factor

Omnibus Test

Formula Example

Fixed effect

η̂2 5
SSeffect

SS total

88.122
748.621

5 .144

ε̂2 5
dfeffect(MSeffect 2 MSerror)

SStotal

2(54.061 2 10.167)
748.621

5 .117

ω̂2 5
dfeffect(MSeffect 2 MSerror)

SS total 1 MSerror

2(54.061 2 10.167)
748.621 1 10.167

5 .116

Random effect

ρ̂2 5
J(MSeffect 2 MSerror)

SS total 1 MSeffect

3(54.061 2 10.167)
748.621 1 54.061

5 .164

Note. J is the number of groups in the design.

out that the sum of the eta squared effect sizes for the orthogonal contrasts
equals the value of eta squared for the omnibus test.

When the independent variable is a random factor the intraclass correlation
may be used to estimate the strength of the association. The lower section
of Table 9 provides the formula and application. Assuming the three levels
of the Bauman et al. (1992) study were randomly selected from a much larger
list of interventions, the effect size would be estimated to equal .164. Cohen
only considered the fixed effect model, and guidelines for interpreting a ran-
dom effect have not been suggested.

Multifactor designs. Bauman et al. (1992) investigated the effect of a sin-
gle independent variable. In many research studies, two or more independent
variables are studied simultaneously to investigate their effects as well as
the interaction between the variables. Here we will only consider a two-
factor design but the formulas generalize to incorporate multiple factors. To
demonstrate measures of association for a factorial design we use the data
introduced in the section on standardized mean differences for multifactor
between-subjects designs: Pretest EDT scores were used to divide partici-
pants in each treatment into two subgroups. The means and standard devia-
tions are presented in Table 3.

In a multifactor design the factors may all be fixed, may all be random,
or may be a mixture of fixed and random factors. Formulas for calculating
proportion of variance effect sizes depend on the nature of the factors in the
design. In addition a distinction is made between the proportion of total vari-
ance that was discussed for single-factor designs and a proportion of partial
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TABLE 10
Proportion of Variance Effect Sizes for Omnibus Test in a Fixed Effects Factorial Design

Formula Example for treatment factor

Proportion of total variance

η̂2 5
SSeffect

SS total

88.122
748.621

5 .144

ε̂2 5
dfeffect(MSeffect 2 MSerror)

SStotal

2(54.061 2 7.188)
748.621

5 .125

ω̂2 5
dfeffect(MSeffect 2 MSerror)

SS total 1 MSerror

2(54.061 2 7.188)
748.621 1 7.188

5 .124

Proportion of partial variance

η̂2 5
SSeffect

SSeffect 1 SSerror

88.122
108.121 1 431.273

5 .200

ε̂2 5
dfeffect(MSeffect 2 MSerror)

SSeffect 1 SSerror

2(54.061 2 7.188)
108.121 1 431.273

5 .177

ω̂2 5
dfeffect(MSeffect 2 MSerror)

dfeffect MSeffect 1 (N 2 dfeffect)MSerror

2(54.061 2 7.188)
108.121 1 (66 2 2)7.188

5 .165

Note. J and K are the number of levels in the A and B factors, respectively.

variance. In a proportion of total variance, the variance due to the effect of
interest is expressed as a proportion of the sum of the error variance and the
effect variances of all factors (i.e., the total variance) in the design. In a
proportion of partial variance, the variance due to the effect of interest is
expressed as a proportion of the sum of the error variance and the effect (of
interest) variance (i.e., the partial variance). The total variation is influenced
by all other factors in a design and therefore proportions of total variance
are not comparable across studies that incorporate different factors. A diffi-
culty with the proportions of partial variance is that the effects of different
factors within the same study cannot be compared because they do not share
a common reference (denominator) point. Because different reference points
are used the sum of these partial measures of effect can be greater than one
even when factors are orthogonal and therefore the concept of a proportion
has a diminished meaning.

Using the data in Table 3 and a fixed effects model the interaction effect
is not statistically significant at the .05 level (F(2, 60) 5 2.03, p 8 .140).
The main effect for Treatments (T) and Ability (A) are each statistically
significant at the .05 level [FT(2, 60) 5 7.52, p 8 .001, and FA(1, 60) 5
25.05, p 8 .000, respectively]. The formulas for the proportion of total vari-
ance are the same as those presented for a single-factor design. Table 10
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provides an application of the formulas to the Treatment factor. In the present
example the total sum of squares did not change when the second factor was
created. Consequently, eta squared for the treatment factor is equal for the
single-factor and two-factor designs. Generally, in completely randomized
designs as factors are added the total sum of squares increases. When the
second factor was created in the present example, the mean square error was
reduced because the participants were more homogeneously grouped. With
the reduction in the error variance epsilon squared and omega squared in-
creased to .125 and .124, respectively. The increased measure of effect for
the blocking design compared to the single-factor design demonstrates a po-
tential hazard of comparing proportion of total variance effect sizes across
studies that are based on different research designs.

Table 10 also reports proportions of partial variance effect sizes. The term
partial refers to the fact that the other factors in the design are controlled
by excluding them from the computation of the effect size. Only the treat-
ment and error variations are used to compute the partial effects. Generally
speaking, a proportion of partial variance for an effect will be larger than
the proportion of total variance for the same effect. Here the proportions of
partial variance as measured by eta squared, epsilon squared, and omega
squared are .200, .177, and .165; each is larger than the corresponding pro-
portion of total variance: .144, .125, and .124. The difference between the
proportion of total variance and the proportion of partial variance depends
on the other factors in the design. If additional factors have large effects, the
proportion of total variance can be substantially smaller than corresponding
proportion of partial variance. The partial effect size measures are also larger
than corresponding proportion of total variance for the single-factor design
presented earlier. Because the blocking variable (pretest EDT) reduced the
within-cell variance the measure of partial effect size is not comparable to the
effect size for the single-factor design. This again demonstrates a potential
difficulty of comparing effect size measures across different designs. The
issues of comparability described in this section are similar to those described
in the section on standardized mean differences and are amenable to the
same solutions. However, because proportion of variance formulas are well
established in the literature, we have not developed these solutions here, but
rather point out comparability problems.

Dodd and Schultz (1973) provided the formulas for computing the omega
squared proportion of total variance for designs in which the two factors are
random or one factor is fixed while the other is random (mixed). Additional
formulas for eta squared are not needed because as noted earlier eta squared
is a descriptive statistic that is relevant only for the current sample and not
for inferences to the population. Consequently, the distinction between fixed
and random effects is not relevant when eta squared is computed. Tables 11
and 12 present the formulas and applications of these formulas for computing
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TABLE 11
Proportion of Variance Effect Sizes for Omnibus Tests in Designs with Two

Random Factors

Effect Formula Example

Proportion of total variance

A ω̂2 5
J(MSA 2 MSAB)

SS total 1 MSA 1 MSB 2 MSAB

3(54.061 2 14.601)
748.621 1 54.061 1 180.015 2 14.601

5 .122

ω̂2 5
K (MSB 2 MSAB)

SS total 1 MSA 1 MSB 2 MSAB

2(180.02 2 14.601)
748.621 1 54.061 1 180.015 2 14.601

5 .342
B

ω̂2 5
JK(MSAB 2 MSerror)

SS total 1 MSA 1 MSB 2 MSAB

3(2)(14.601 2 7.188)
748.621 1 54.061 1 180.015 2 14.601

5 .046
AB

Proportion of partial variance

ω̂2 5
MSA 2 MSAB

MSA 1 nK 3 MSerror 2 MSAB

(54.061 2 14.606)
54.061 1 2(11)7.187 2 14.606

5 .200
A

ω̂2 5
MSB 2 MSAB

MSB 1 nJ 3 MSerror 2 MSAB

(180.015 2 14.606)
180.015 1 3(11)7.187 2 14.606

5 .411
B

ω̂2 5
MSAB 2 MSerror

MSAB 1 (n 2 1)MSerror

(14.606 2 7.188)
14.606 1 (11 2 1)7.187

5 .086
AB

Note. J and K are the number of levels in the A and B factors, respectively.

the proportions of total and partial variance. In all cases the proportion of
partial variance values are greater than the proportion of total variance. Com-
paring corresponding results in Table 10 (all factors fixed) and Tables 11
and 12 (one or both factors random) demonstrates the importance of recog-
nizing the true nature (random or fixed) of the factors being investigated.
The use of an inappropriate formula can substantially change the numerical
value of the effect size measure.

For designs involving more than one random independent variable the
formulas provided by Vaughan and Corballis (1969) or Dodd and Schultz
(1973) would be useful or the appropriate statistics may be derived using
the expected mean squares reported in several popular intermediate statistics
textbooks (e.g., Keppel, 1991; Kirk, 1982; Maxwell & Delaney, 1990).

Single-factor designs with covariates. Using the EDT and Strategies pre-
tests as covariates and Posttest EDT as the outcome measure the omnibus
test was conducted. First, however, the test of the interaction between the
pretest measures and the intervention factor (homogeneity of regression
slopes) must be examined. Neither pretest measure interacted with the inter-
vention variable (FEDT(2, 57) 5 2.15, p 8 .126; FStrategy(2, 57) 5 .10, p 8
.906). The omnibus test was statistically significant at the .05 level (F(2,
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TABLE 13
Proportion of Variance Effect Sizes for Omnibus Tests in a

Single-Factor Design: Analysis of Covariance

Formula Example

η̂2 5
SSeffect

SS total

142.26
748.621

5 .191

ε̂2 5
dfeffect(MSeffect 2 MSerror)

SS total

2(71.630 2 5.659)
748.621

5 .176

ω̂2 5
dfeffect(MSeffect 2 MSerror)

SStotal 1 MSerror

2(71.630 2 5.659)
748.621 1 5.659

5 .175

61) 5 12.66, p 8 .000). Proportion of variance effect sizes are reported in
Table 13.

Between-Subjects Multivariate Designs

Single-factor designs. Bauman et al. (1992) considered the EDT and Strat-
egies posttests to measure a single construct, reading comprehension. Conse-
quently, they compared the three interventions with respect to the vector
outcomes of the two posttests. Proportion of variance effect size indicators
for multivariate analyses analogous to the univariate indices presented above
have been recommended and are discussed in this section, as is their applica-
tion. For the Bauman et al. data, the multivariate test comparing the treatment
groups on the posttest EDT and Strategies was statistically significant at the
.05 level using the Wilks’s lambda criterion. (F(4, 124) 5 2.52, p 8 .045).
The univariate test on the EDT posttest was reported earlier. The univariate
test for DRP was not statistically significant at the .05 level (F(2, 63) 5
2.23, p 8 .117). Formulas and applications of measures of association
(Huberty, 1972; Sachdeva, 1973; Smith, 1972; Stevens, 1972) for omnibus
multivariate tests are presented in Table 14. The formulas for unadjusted
and adjusted eta and omega squared statistics are the same as those reported
for the contrasts; of course, Wilks’s lambda for the omnibus test is used in
place of Λ for the contrasts. The values for the multivariate effect size in
Table 14 are almost identical to the measures of association for the fixed
effects univariate measures of association reported in Table 9. For these data
group membership explained little variation in DRP.

In addition to eta and omega squared three additional multivariate pro-
portion of variance effect sizes have been recommended (Cramer &
Nicewander, 1979; Serlin, 1982) based on different multivariate test criteria
(Hotelling–Lawley trace and Bartlet–Pillai trace). These alternative multi-
variate effect size measures are briefly discussed by Huberty (1994, pp.
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TABLE 14
Multivariate Proportion of Variance Effect Sizes for Omnibus Tests

Formula Example

η̂2
Multi 5 1 2 Λ 1 2 .855 5 .145

adjη̂2
Multi 5 η̂2

Multi 2
(p2 1 q2)(1 2 η̂2

Multi)
3N

.145 2
(22 1 22)(1 2 .145)

3(66)
5 .110

ω̂2
Multi 5 1 2

NΛ
dferror 1 Λ

1 2
66(.855)

(66 2 3) 1 .855
5 .116

adjω̂2
Multi 5 ω̂2

Multi 2
(p2 1 q2)(1 2 η̂2

Multi)
3N

.116 2
(22 1 22)(1 2 .116)

3(66)
5 .080

τ̂2 5 1 2 Λ1/r 1 2 .8551/2 5 .075
ζ̂2 5 U/(r 1 U ) .169/(2 1 .169) 5 .078
ξ̂2 5 V/r .145/2 5 .072

Note. Λ 5 Wilks’s lambda, V 5 Bartlett–Pillai trace, and U 5 Hotelling–Lawley trace; J
is the number of groups in the design; p is the number of dependent variables; q is the number
of degrees of freedom for the hypothesis; r 5 min(p, q); dferror 5 N 2 J.

194–195). The bottom of Table 14 reports the formulas and applications of
three of these measures of association, τ̂2, ζ̂2, and ξ̂2. All three measures of
association are lower than the adjusted eta and omega squared. It is worth
noting that these statistics are reported by SPSS in the multivariate GLM
program under the title of eta squared when effect sizes are requested.

Multifactor designs. Returning to the two-factor design with Ability as
the second factor, the multivariate test of the interaction between the Treat-
ments and Ability for the vector of EDT and DRP posttest variables was not
statistically significant at the .05 level (F(4, 118) 5 1.87, p 8 .120). Both
main effects were statistically significant at the .05 level, (FT(4, 118) 5 3.49,
p 8 .011, and FA(2, 59) 5 12.34, p 8 .000). For multivariate factorial designs
the same formulas reported in Table 14 would be used the effect size. Table
15 presents the formulas and application of the measures of effect for the
treatment factor. The factorial effect sizes for the treatment factor are all a
little larger then the single-factor multivariate effect sizes for the treatment
factor reported in Table 14 because the error matrix was reduced when the
ability factor was added to the design. Because Wilks’s lambda is computed
as the ratio of the determinant of the error matrix and the determinant of the
sum of the hypothesis matrix and the error matrix (Λ 5 |E|/|H 1 E|), the
values of the measures of association are partial effect sizes rather than pro-
portions of total variance. In our review we did not find any references to
multivariate random effects or mixed model effects.

Designs with covariates. Covariates can be used in a multivariate design,
as well as in a univariate design, to enhance power. When the omnibus test
is conducted, proportion of variance effect sizes can be used to describe the
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TABLE 15
Multivariate Proportion of Variance Effect Sizes Applied to the Treatment Effect in

Two-Factor Design

Formula Example

η̂2
Multi 5 1 2 Λ 1 2 .799 5 .201

adjη̂2
Multi 5 η̂2

Multi 2
(p2 1 q2)(1 2 η̂2

Multi)
3N

.201 2
(22 1 42)(1 2 .201)

3(66)
5 .120

ω̂2
Multi 5 1 2

NΛ
dferror 1 Λ

1 2
66(.799)

(66 2 6) 1 .799
5 .133

adjω̂2
Multi 5 ω̂2

Multi 2
(p2 1 q2)(1 2 η̂2

Multi)
3N

.173 2
(22 1 42)(1 2 .173)

3(66)
5 .089

τ̂2 5 1 2 Λ1/r 1 2 .7991/2 5 .106
ζ̂2 5 U/(r 1 U ) .251/(2 1 .251) 5 .112
ξ̂2 5 V/r .201/2 5 .101

Note. Λ 5 Wilks’s lambda, V 5 Bartlett–Pillai trace, and U 5 Hotelling–Lawley trace; J
is the number of groups in the design; p is the number of dependent variables; q is the number
of degrees of freedom for the hypothesis; r 5 min(p, 9); dferror 5 N 2 JK.

strength of the multivariate omnibus effect. Here we only demonstrate the
estimation of effect size for a single-factor univariate and multivariate analy-
sis of covariance but applications to factorial designs are also possible. The
multivariate omnibus test was statistically significant at the .05 level (F(4,
120) 5 5.75, p 8 .000). Table 16 presents the formulas and application for
the effect size measures. A comparison of these effect size measures with
those reported in Table 14 without the covariates again shows that the effect
sizes reported with the covariates are now twice the effect size obtained
when the covariates are not used. These results demonstrate that making
comparisons between studies that differ in their design and use of control

TABLE 16
Multivariate Proportion of Variance Effect Sizes: Analysis

of Covariance

Formula Example

η̂2
Multi 5 1 2 Λ 1 2 .704 5 .296

ω̂2
Multi 5 1 2

NΛ
dferror 1 Λ

1 2
66(.704)

(66 2 5) 1 .704
5 .247

τ̂2 5 1 2 Λ1/r 1 2 .7041/2 5 .161
ζ̂2 5 U/(r 1 U ) .420/(2 1 .420) 5 .174
ξ̂2 5 V/r .296/2 5 .148
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factors can be very misleading. They also raise some question regarding the
appropriateness of generalizing Cohen’s guidelines for interpreting effect
size measures across all different analysis models and research designs.
These issues are discussed further under Cautionary Notes below.

Within-Subjects Designs

Dodd and Schultz (1973) provide the computational formulas for comput-
ing the omega squared proportion of total variance for repeated measures
designs. Here we also consider the partial effect size measures derived using
the expected mean squares for a single within-subjects factor reported by
Kirk (1982, p. 245) assuming measures are fixed, subjects are random, and
there is no subjects by measures interaction. The repeated measures design
can be thought of as a two-factor design (measures and subjects) with one
observation per cell. The repeated measure factor is fixed and the subject
factor is random. With one observation per cell there is no estimate of within-
cell variance and the interaction of subjects and measures is used as the error
term. To estimate omega squared, the formulas reported in Table 12 apply,
with Factor A representing the Measures factor and Factor B representing
the Subjects factor. Because MSAB 5 MSerror, the MSAB term drops out of the
formulas. The resulting formulas are reported in Table 17 and applied to the
one-factor within-subjects design with pretest and posttest EDT as the levels
of the factor.

Computing a proportion of total variance effect size for the within-subjects
factors is a little more difficult than for between-subjects designs. When
SPSS is used to analyze data from a within-subjects design, SPSS does not
print the SS total. With SAS, MSsubjects and SS total are not printed when the Re-
peated statement is used. With each package the missing quantities will be
printed if the data are organized as if the within-subjects factors had been
between-subjects factors and the data are analyzed as if all factors had been
between-subjects factors.

The proportion of partial variance effect size is provided in SPSS and can
be computed by using the output reported in SAS using the Repeated state-
ment. Table 17 presents these results. Eta squared using lambda is identical
to the partial eta squared computed using the sum of squares. Omega squared
computed using lambda is larger than the partial omega squared computed
using the univariate mean squares.

Split-Plot Design

In the Bauman et al. (1992) study participants were randomly assigned
to treatment groups and each participant was assessed before and after the
treatments. The data can be analyzed by using a split-plot analysis of vari-
ance. The interaction between group and measures was statistically signifi-
cant at the .05 level (F(2, 63) 5 12.64, p 8 .000). This result is not surprising
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TABLE 17
Proportion of Variance Effect Sizes for a Within-Subjects Design

Formula Example

Proportion of total variance

η̂2 5
SSeffect

SS total

96.735
1438.386

5 .067

ε̂2 5
dfeffect(MSeffect 2 MSerror)

SStotal

1(96.735 2 4.519)
1438.386

5 .064

ω̂2 5
dfeffect(MSeffect 2 MSerror)

SS total 1 MSsubjects

1(96.735 2 4.519)
1438.386 1 16.121

5 .063

Proportion of partial variance

η̂2 5
SSeffect

dfeffect MSeffect 1 SSerror

(1)96.735
(1)96.735 1 293.765

5 .248

ε̂2 5
dfeffect(MSeffect 2 MSerror)
dfeffect MSeffect 1 SSerror

1(96.735 2 4.519)
(1)96.735 1 293.765

5 .236

ω̂2 5
dfeffect(MSeffect 2 MSerror)

dfeffect MSeffect 1 (N 2 dfeffect)MSerror

1(96.735 2 4.519)
1(96.735) 1 (66 2 1)4.519

5 .236

η̂2
Multi 5 1 2 Λ 1 2 .752 5 .248

ω̂2
Multi 5 1 2

NΛ
dferror 1 Λ

1 2
66(.752)

65 1 .752
5 .245

because individuals were randomly assigned to the groups so only trivial
differences were expected on the pretest. Differences due to the treatments
on the posttest were expected. Given this result the main effects for measures
and treatments would typically be of little interest but are presented here only
for completeness. The main effect for measures was statistically significant at
the .05 level (FM(1, 63) 5 29.07, p 8 .000) but the main effect for treatments
did not meet the statistical criteria at the .05 level (FG(2, 63) 5 1.40, p 8
.255). Gaebelein and Soderquist (1978) provide the formulas for the variance
components for the split-plot design assuming both the repeated measures
factor and the between subjects factor are fixed. Table 18 presents the formu-
las and application of the total and partial proportion of variance effect size
measures. In this table factor A is the between-subjects factor and has J
levels. Factor B is the within-subjects factor and has K levels. The eta squared
effect sizes are computed as described previously. However, the partial eta
squared measures of effect size for the between-subjects and the within-
subjects factors have different denominators because these effects have dif-
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ferent error terms and therefore are not comparable. SPSS provides the par-
tial eta squared statistics for both the between- and the within-subjects factors
as an option. Unlike with the within-subjects design described above, when
a between subjects factor is included, SAS provides all the information
needed to compute the omega squared proportions of total and partial vari-
ance. For the present example the partial omega squared value is much
smaller than partial eta squared for effects involving the within-subjects fac-
tor. Eta squared computed using Wilks’s lambda equals the partial eta
squared computed using the univariate sum of squares. Computing the partial
omega squared statistic using Wilks’s lambda results in an estimate of the
effect similar to partial eta squared and considerably larger than the effect
estimated using the univariate mean squares.

CAUTIONARY NOTES

While many have advocated the reporting one or more measures of effect
along with tests of statistical significance, it should be noted that these mea-
sures of effect are not without their critics. Effect size measures have been
offered as indices of practical significance or meaningfulness. But a basic
question raised by some critics is whether these measures actually contribute
to a better understanding of the study’s results. How meaningful is it to a
policy maker to learn that a treatment explains 10% of the variance in an
outcome measure or that there is a half standard deviation difference between
a treatment group and a control group? What practitioners want to know are
answers to such questions as: ‘‘What can the participants of the treatment
do because of the intervention that the control group cannot do?’’ Such ques-
tions are validity issues that depend on the meaning of the measures used
(Keren & Lewis, 1979; Porter, Schmidt, Floden, & Freeman, 1978; Yeaton &
Sechrest, 1981). Statistical indices of effect are computed, as demonstrated
above, completely independent of the meaning of the measures used. At best
these statistical indices are relative measures of effect, not absolute measures.

Standards used to evaluate the effect size measures have also been ques-
tioned. Cohen (1988) suggested .2σ, .5σ, and .8σ as small, medium, and
large effects as a starting point for interpreting the standardized mean differ-
ences and 1%, 6%, and 14% as guidelines for interpreting measures of asso-
ciation. But there is little empirical justification for these standards. Feldt
(1973), for example, considered a change in average test performance on the
Iowa Test of Basic Skills (ITBS) from the 50th to the 75th percentile to be
a large improvement. He examined six subtests of the ITBS and found that
such an improvement in Grades 3, 5, 7, and 8 would require an increase
performance of between .246 and .372 standard deviations. For the Iowa
Test of Basic Skills, then, a ‘‘large’’ effect would be considerably smaller
than that suggested by Cohen. Cohen recognized this limitation and encour-
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aged researchers to offer alternative standards but, as yet, none have been
offered. Further, one might question whether the standards offered for uni-
variate statistics should also be accepted for multivariate effect size mea-
sures. It seems unreasonable to think that a common set of criteria can be
set for all studies.

Throughout this paper it was noted that measures of effect size are affected
by the research design used. If researchers are not careful, serious errors in
computing an effect size (e.g., using equations appropriate for a fixed factor
when the factor is random) can result. Effect sizes may not be comparable
across different designs and could lead to misinterpretations of the magnitude
of the effects observed. That is, the effect size computed from a study that
includes one or more individual difference factors (e.g., covariates, blocking
variables) will not be comparable to the effect size computed from a study
that includes only manipulated variables. As demonstrated here, adjustments
can be made if sufficient information is available but this may not always
be the case.

Another potential problem with omega squared measures of effect is they
were derived from the variance components obtained from the expected
mean squares for the sources of variation in the model. The expected mean
squares assume a balanced design. In many applied research contexts sample
sizes are not equal and are generally disproportionate. Vaughan and Corballis
(1969) cautioned against the use of omega squared in these situations. Carroll
and Nordholm (1975), however, found that in a single-factor design, unequal
n had little effect on the estimation of Kelley’s ε2 or Hay’s ω2 if variances
are equal, and with equal n heterogeneous variances had little impact on the
estimation of these effect sizes. But unequal n and heterogeneous variances
lead to an overestimation of the effect size, and Carroll and Nordholm cau-
tioned against their use in these situations.

Carroll and Nordholm (1975) also showed empirically that the standard
errors for both ε2 and ω2 can be large when sample sizes are small. Even
when the total sample size from three populations equaled 90 the standard
errors for these effect size measures were unacceptably large. The authors
cautioned researchers against interpreting these effect size measures when
they are estimated using small samples.

Levin’s (1967) point regarding effect size measures for omnibus tests also
merits restating. In most multigroup studies the omnibus hypothesis test is
rarely useful for answering research questions of real interest to researchers
(Olejnik & Huberty, 1993; Rosnow & Rosenthal, 1988). An omnibus effect
size measure may be very misleading if the large effect is produced by a
single discrepant treatment mean that may or may not be of primary interest
to the researcher. Specific contrasts are often much more meaningful to re-
searchers and effect size measures for these contrasts are likely to be more
meaningful and should be encouraged.
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Finally, an effect size measure is often interpreted relative to effect size
measures reported in previous studies. But several critics have pointed out
that measures of association are affected by the reliability of the measures,
the heterogeneity of the populations being compared, the specific levels of
the variables studied, the strength of the treatments, and the range of treat-
ments (Maxwell et al., 1981; O’Grady, 1982; Sechrest & Yeaton, 1982), thus
making such comparisons hazardous. Fern and Monroe (1996) presented an
especially comprehensive discussion of these factors. Differences on these
factors can lead to misleading comparisons of measures of effect:

1. Low reliability increases the error variance and puts a limit on the
amount of variance that can be explained by an explanatory variable. Two
measures of effect from two studies of the same explanatory variable can
be substantially different if the outcome measures used have substantially
different reliabilities.

2. Population heterogeneity can reduce the magnitude of the effect size
measure. The effect sizes computed in two studies that differ with respect
to the variability of the outcome measure may not be comparable. For exam-
ple, if one investigation studies high school freshmen while a second study
involves high school students from all grade levels, the measures of effect
size may not be comparable.

3. In fixed effects models the magnitude to the omnibus measures of effect
size depends on the specific levels of the variables studied. If different levels
of the explanatory variable are investigated, the measure of effect will not
be comparable. This of course is also true with tests of statistical significance
as well.

4. The strength of the treatment refers to the likelihood that the treatment
will have the intended effect (Sechrest & Yeaton, 1982). A strong treatment
would explain more variance than a weak treatment but the quantification
of the strength of a treatment is generally unknown. For example Nist and
Olejnik (1995) studied the effect of context and dictionary use on varying
levels of word knowledge. In this study the quality of the dictionary defini-
tions and the quality of the context in which the target words were provided
were varied. The quality of dictionary definitions and the quality of context
were simply described as weak or strong but not quantified. The amount of
variation in the word knowledge scores explained by both of these factors
depended a great deal on the type of cues provided in the context and the
clarity of the definitions provided. Sechrest and Yeaton (1982) argue that
without knowledge of the strength of a treatment the proportion of variance
accounted for is meaningless.

5. The range of treatments included in a study can increase or reduce the
proportion of variation explained. For example, if the levels of the treatment
variable were narrowly defined (e.g., 10, 20, 30, or 40 min of free reading
time), the between-treatment variation in comprehension skills would be
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lower than in a study with a greater spread in the levels in free reading times
(e.g., 30, 60, 90, or 120 min). The increased variability of the latter design
is likely to lead to a greater measure of effect.

Because of the limitations of effect size measures describe above, it is
often difficult to make meaningful comparisons of effect sizes across differ-
ent studies or to interpret them against a common standard. Perhaps one
reason that measures of effect have been slowly adopted has been because
of these limitations.

Conclusion

Although methodologists have long advocated the use of some type of
effect size measure, applied researchers have been slow to incorporate them
along with their statistical tests in reporting their research findings. It is hoped
that by presenting the formulas for several indices of effect size for a variety
of univariate and multivariate tests and their applications, researchers will
be encouraged to include these measures when reporting their findings. But
increased use alone without recognition of the inherent limitations associated
with these indices of effect may not add to a better understanding of research
findings. With the limitations in mind, however, it is believed that these
measure of effect will prove to be useful and meaningful to researchers and
practitioners alike.
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