ΔR^2 Explained and Illustrated

1. ΔR^2 Defined

Recall that R^2 is a measure of the proportion of variability the DV that is predicted by the model IVs.

 ΔR^2 is the change in R^2 values from one model to another.

 ΔR^2 is the incremental increase in the model R^2 resulting from the addition of a predictor, or set of predictors, to the regression equation.

2. Example

Model 1 (Reduced model)

Test Scores =
$$b_0 + b_1 (IQ) + e$$

Model 2 (Full model)

Test Scores =
$$b_0 + b_1 (IQ) + b_2 (Study Time) + e$$

DV = **Student Reading Test Scores**

IV 1 = IQ

IV 2 = Amount of time spent studying before test

Models	\mathbb{R}^2
Full: Test Scores = $b_0 + b_1 (IQ) + b_2 (Study Time) + e$.80
Reduced: Test Scores = $b_0 + b_1 (IQ) + e$.60
Change in \mathbb{R}^2 values = $\Delta \mathbb{R}^2$ (Study Time) = .8060 =	.20

3. Hypothesis Tests

Null Hypothesis

Study Time does not increase or contribute to the predictive power of the regression model; the variable Study Time does not reduce error in prediction.

$$H_0$$
: ΔR^2 (Study Time) = 0.00

Alternative Hypothesis

Study Time does increase predictive power of regression model.

H₁:
$$\Delta R^2$$
 (Study Time) $\neq 0.00$

Partial F-test

A partial F-test is used to test whether ΔR^2 increase is more than would be expected by chance.

$$F = \frac{\Delta R^2(X)/(df_{2reduced} - df_{2full})}{(1 - R_{full}^2)/df_{2full}}$$

$$df_1 = df_{2reduced} - df_{2full}$$

and

$$\mathbf{df}_2 = \mathbf{df}_{2\text{full}}$$

4. Example with SPSS

Reading Test	Study		
Scores	Time	IQ	Teacher
85	7	105	Griffin
73	0	95	Griffin
86	5	100	Griffin
81	4	103	Griffin
99	6	113	Moore
93	4	108	Moore
86	2	95	Moore
81	2	100	Moore
77	3	98	Smith
82	2	102	Smith
86	4	110	Smith
91	5	111	Smith

	ΔR^2	df ₁	df_2	F
Study Time	.057	1	7	3.16
IQ	.068	1	7	3.80
Teacher	.224	2	7	6.20*

^{*}p<.05