
Self-Assessment 

Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons 

 

1. Suppose we wish to assess the impact of five treatments while blocking for study participant race (Black, Hispanic, 

White) on an outcome Y. How would these five treatments and three race categories be coded as dummy variables? 

Present actual data to illustrate the coding. Note: The term “blocking” used above represents analysis of variance 

language and indicates a variable for which one wishes to control statistically by including it in the model because the 

researcher believes it accounts for (predicts) variability in the outcome (DV). For example, when studying the effects of 

different fertilizers on tomato production, it is important to block other factors that can affect tomato production such 

as soil conditions and irrigation levels. Thus, blocking a variable simply means including it in the model so error variance 

can be reduced and thereby produce more powerful (i.e., lower Type 2 errors) statistical tests of the treatment.  

 

Each case for a given treatment would be coded as 1, and if a case does not occur for that treatment, it would 

be coded as 0. The same procedure would be used to model race with dummy variables. 

 

Y Treat. 
1 

Treat. 
2 

Treat. 
3 

Treat. 
4 

Treat. 
5 

Treatment 
Received 

Black Hisp White Race 

Score 1 0 0 0 0 1 1 0 0 B 
Score 0 1 0 0 0 2 1 0 0 B 
Score 0 0 1 0 0 3 0 1 0 H 
Score 0 0 0 1 0 4 0 1 0 H 
Score 0 0 0 0 1 5 0 0 1 W 
Score 0 0 0 0 1 5 0 0 1 W 

 

 

2. Both the Bonferroni and Scheffé adjustments are designed to hold the familywise Type 1 error rate to a specific level. 

Can we be assured that both function to do this? One way to test this is to calculate the inflation to the Type 1 error rate 

using the adjusted Bonferroni and Scheffé per-comparison alpha (Type 1 error rate per test or per comparison).   

 

The Week 6 Self-assessment Activity Question 4 asked that you calculate both Bonferroni and Scheffé confidence 

intervals for a study containing n = 76 observations with four drug treatments and a familywise error rate of .05. 

 

DV = Heart rate = beats per minute  

IV = Blood Pressure Medication = four drugs prescriptions (Losartan, Ziac, Lisinopril [12.5mg], and Lisinopril [40mg]) 

 

Critical t-values were as follows 

 

Bonferroni adjusted critical t ratio  

= ± 2.7129 

 

Scheffé adjusted critical t ratio 

= ±2.8627 

As a review, the appendix below shows how these values were obtained.  

 

Both of these critical t-ratios have corresponding specific pairwise comparison alpha levels. The alpha values have been 

adjusted using either the Bonferroni or Scheffé procedure.  

 



To determine the corresponding specific alpha level for each, we can use Excel to find the two-tailed significance level 

and this will be the alpha level for each pairwise comparison. 

 

Bonferroni adjusted pairwise alpha level   

=T.DIST.2T(2.7129,72) = .008338 

 

Scheffé adjusted pairwise alpha level  

=T.DIST.2T(2.8627,72) = 0.005497 

 

So these numbers tell us that if we wished to compare a p-value for each comparison against an alpha level, the 

Bonferroni adjusted alpha level would be .008338 and the Scheffé adjusted alpha level would be .005497.  

 

(a) If one performed six pairwise comparisons using the Bonferroni adjusted pairwise comparison alpha of .008338, what 

would be the calculated familywise error rate across these six comparisons? 

 

Recall that the familywise error rate represents the probability of at least one false positive across a collection 

of tests. If there are six tests to be performed, then the familywise error rate could be as high as 

 

FW alpha = 1 – (1 – alpha)C  

 

Where FW alpha is the familywise alpha; alpha is the unadjusted, per comparison alpha; and c is the number 

tests performed. Since the Bonferroni adjusted alpha is .008338, the FW alpha would be 

 

FW alpha = 1 – (1 – alpha)C    

FW alpha = 1 – (1 – .008338)6    

FW alpha = 1 – (.991662)6    

FW alpha = 1 – .9510033 

FW alpha = .04899 

 

Thus, the familywise Type 1 error rate for these six comparisons would be .04899 or just under the targeted 

value of .05.  

 

(b) If one performed six pairwise comparisons using the Bonferroni adjusted pairwise comparison alpha of .005497, 

what would be the calculated familywise error rate across these six comparisons? 

 

The Scheffé adjusted FW alpha would be  

 

FW alpha = 1 – (1 – alpha)C    

FW alpha = 1 – (1 – .005497)6    

FW alpha = 1 – (.967467)6    

FW alpha = 1 – .967467 

FW alpha = .03253 

 

The Scheffé familywise Type 1 error rate is .03253, further under the targeted .05 level than the Bonferroni 

familywise rate and this is consistent with what we know about these two procedures – for only a few 

comparisons the Scheffé procedure produces a more conservative overall test (i.e. less likely to reject Ho).   



3. Ian Walker collected data on bicycle overtaking (vehicles passing bicycles) in the UK. His data are available from this 

link: 

 

http://drianwalker.com/overtaking/ 

 

For this self-assessment activity we will focus on the following variables: 

 

Dependent Variable 

Passing_distance = distance in meters that vehicles gave bicycles while passing 

 

Predictor Variables 

Distance_from_kerb = distance of bicycle from curb. Distances, in meters, were 0.25, 0.50, 0.75, 1.00, and 1.25.  

Helmet = whether rider used a helmet (1 = yes, 0 = no) 

Car = whether vehicle that passed was a car or some other vehicle type (e.g., bus, lorry, etc.; 1 = car, 0 = other) 

Time = time of day overtaking recorded grouped into three categories, morning, midday, and afternoon 

 

Two of the above variables contain more than two categories, so dummy variables were constructed as follows: 

 

Distance_from_kerb dummy variables: 

Curb_0.25 (1 = yes, 0 = no) 

Curb_0.50 (1 = yes, 0 = no) 

Curb_0.75 (1 = yes, 0 = no) 

Curb_1.00 (1 = yes, 0 = no) 

Curb_1.25 (1 = yes, 0 = no) 

 

Time dummy variables: 

Morning  (1 = yes, 0 = no; this represents times of 7am to 10:59am) 

Midday  (1 = yes, 0 = no; from 11am to 2pm) 

Afternoon  (1 = yes, 0 = no; between 2:01pm and 6pm) 

 

Below is an SPSS regression analysis of passing_distance regressed on the four predictors outlined above. 

 
 Descriptive Statistics 

  Mean Std. Deviation N 

Passing distance 1.31391 .383454 2355 

Car .7253 .44648 2355 

helmet .49 .500 2355 

Curb_0.50 .2314 .42183 2355 

Curb_0.75 .1439 .35111 2355 

Curb_1.00 .1992 .39945 2355 

Curb_1.25 .1410 .34807 2355 

Midday .2917 .45465 2355 

Afternoon .3125 .46362 2355 

 

 

 

 

 

http://drianwalker.com/overtaking/


 Model Summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Change Statistics 

R Square 
Change F Change df1 df2 Sig. F Change 

1 .285(a) .081 .078 .368225 .081 25.844 8 2346 .000 

a  Predictors: (Constant), Afternoon, Curb_0.50, Car, helmet, Curb_1.25, Curb_0.75, Midday, Curb_1.00 

 
 ANOVA(c) 

Model   
Sum of 

Squares df Mean Square F Sig. 
R Square 
Change 

1 Subset Tests Car 2.368 1 2.368 17.465 .000(a) .007 

    helmet 1.806 1 1.806 13.322 .000(a) .005 

    Curb_0.50, 
Curb_0.75, 
Curb_1.00, 
Curb_1.25 

14.874 4 3.719 27.426 .000(a) .043 

    Midday, Afternoon .022 2 .011 .081 .922(a) .000 

  Regression 28.033 8 3.504 25.844 .000(b)   

  Residual 318.093 2346 .136       

  Total 346.126 2354         

a  Tested against the full model. 
b  Predictors in the Full Model: (Constant), Afternoon, Curb_0.50, Car, helmet, Curb_1.25, Curb_0.75, Midday, Curb_1.00. 
c  Dependent Variable: Passing distance 

 
 Coefficients(a) 

Model   
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 95% Confidence Interval for B 

    B Std. Error Beta     Lower Bound Upper Bound 

1 (Constant) 1.406 .028   49.808 .000 1.350 1.461 

  Car .072 .017 .083 4.179 .000 .038 .105 

  helmet -.057 .016 -.074 -3.650 .000 -.087 -.026 

  Curb_0.50 -.092 .023 -.101 -4.028 .000 -.137 -.047 

  Curb_0.75 -.173 .028 -.158 -6.163 .000 -.228 -.118 

  Curb_1.00 -.184 .026 -.191 -7.083 .000 -.235 -.133 

  Curb_1.25 -.267 .027 -.242 -9.804 .000 -.320 -.214 

  Midday .008 .021 .009 .386 .700 -.032 .048 

  Afternoon .007 .022 .008 .298 .765 -.037 .050 

a  Dependent Variable: Passing distance 
 

 

(a) Note that all predictor variables included in this regression are dummy variables with 0, 1 coding. The “Descriptive 

Statistics” table shows the following means: 

 

Variable Mean 

Car .7253 

helmet .4900 

Curb_0.50 .2314 

Curb_0.75 .1439 

Curb_1.00 .1992 

Curb_1.25 .1410 

Midday .2917 

Afternoon .3125 

 



(a1) What does the mean value of .7253 for Car tell us? What is the interpretation of this value? 

 

Since this variable is scored 0 and 1, the value .7253 is a proportion and tells us that .7253 or 72.53% of 

vehicles that overtook the bicycle were cars.  

 

(a2) For helmet, the mean is .4900, what does this tell us? 

 

Same logic as above, .49 or 49% of the observations the bicycle rider wore a helmet.  

 

(a3) For Curb_0.75 the mean value is .1439, what does this tell us? 

 

Same logic as above, .1439 or 14.39% of the observations the bicycle rider was about 0.75 meters from the 

curb.  

 

(a4) For midday the mean value is .2917 – what interpretation may we use for this? 

 

Same logic as above, .2917 or 29.17% of the observations occurred midday.   

 

(b) The squared semi-partial correlations (ΔR2) for each of the predictors are 

 

Car Type = 0.007 

Helmet Use = 0.005 

Curb Distance = 0.043 

Time of Data = 0.000 

 

When added together, these produce a summed R2 value of 0.007 + 0.005 + 0.043 + 0.000 = 0.055. However, SPSS 

reports that the total model R2 is .081. Why is there a discrepancy between the summed R2 and the model R2 reported 

by SPSS? 

 

Squared semi-partial correlations tell us the shared variance between X1 and Y controlling for X2. These 

values will be additive only if X1 and X2 are uncorrelated or orthogonal. If predictor variables are not 

orthogonal, then summing squared semi-partial correlations will not add to model R2 because X1 and X2 share 

variance with Y. Only when X1 and X2 do not share variance with Y will the sum of squared semi-partial 

correlations = model R2.  

 

This is illustrated in the Venn diagrams below.  

 



 
 

 

(c) The ANOVA table shows us F ratios and p-values for each predictor variable. For Helmet use, F = 13.322 and p = .000, 

so there are differences in passing distances between riders wearing helmets and riders not wearing helmets. Suppose 

for a moment that the ANOVA table was not presented so we don’t have access to this F ratio or ΔR2 values. Would we 

be able to determine whether the null for helmet use could be rejected with any other information provided in the 

regression output? If yes, what information could we use? 

 

Yes, since this variable has only two categories, or one dummy variable, the t-ratio provided by the regression 

coefficient table provides the same test as the F ratio in the ANOVA table. For helmet use, t = -3.65 with a p = 

.000, so Ho is rejected. When a variable is represented by one vector (or one variable) in the regression (i.e., 

the variable as 1 model degree of freedom), the F and t ratios can be found from each other as 

 

F = t^2 

 

And 

 

t = √𝑭 

 

For example, t = -3.65 squared is 13.3225 which is the same value as the F ratio reported above.  

 

Additionally, one could use the confidence interval for helmet use to test Ho. Since 0.00 is not within the 

interval (-0.087 to -0.026), Ho would be rejected.  

 

  



(d) As noted above in (c), the ANOVA table shows us F ratios and p-values for each predictor variable. For Curb (Kerb in 

the UK) Distance, F = 27.426 with p = .000. Suppose for a moment that the ANOVA table was not presented so we don’t 

have access to this F ratio or ΔR2 values. Would we be able to determine whether the global test of the null for Curb 

Distance could be rejected with any other information provided in the regression output? If yes, what information could 

we use? 

 

In this case the global test of mean differences based upon Curb Distance could not be tested. To test whether 

this variable contributes to prediction of Passing Distance, we must know some component that would allow 

us to calculate a global F test such as the ΔR2 value for including Curb Distance, or the sums of squares or 

mean square for Curb Distance. Without this information it is not possible to test the global contribution of 

Curb Distance.  

 

We do have, however, individual pairwise comparisons of Curb Distances presented in the regression table, 

but these provide only partial information about Curb Distance effect.  

 

(e) Provide literal interpretations for each of the unstandardized regression coefficients listed below. 

 

Intercept, B0 = 1.406:  Predicted passing distance (1.406 meters) for non-cars, no helmet, curb distance of .25, and 
morning. 

Car, B1 = .072: Cars provide .072 meters more distance when passing than non-cars controlling for helmet 
use, curb distance, and time of day 

Helmet, B2 = -.057: Helmet wearers have less passing distance, -.057 meters, than non-helmet wearers 
controlling for vehicle type, curb distance, and time of day 

Curb_1.00, B5 = -.184: Riders who are 1 meter from the curb has -.184 meters passing distance controlling for 
helmet use, car type, and time of day 

Afternoon, B8 = .007:  Afternoon riders experience more passing distance, .007 meters, compared with morning 
riders controlling for car type, helmet use, and curb distance 

 

(f) What is the predicted mean passing distance for someone with the following variable values: 

 

Scenario 1: 

Passing Car 

Not wearing a helmet 

Curb distance of .25 

Midday riding 

 

Factor Coefficient Dummy Code 
intercept 1.406 

 car 0.072 1 
helmet -0.057 0 
curb .5 -0.092 0 
curb .75 -0.173 0 
curb 1 -0.184 0 
curb 1.25 -0.267 0 
midday 0.008 1 
afternoon 0.007 0 

   predicted passing = 1.486 
 



Scenario 2: 

Passing Truck 

Wearing a helmet 

Curb distance of 1.25 

Morning Riding 

 

Factor Coefficient Dummy Code 
Intercept  1.406 

 car 0.072 0 
helmet -0.057 1 
curb .5 -0.092 0 
curb .75 -0.173 0 
curb 1 -0.184 0 
curb 1.25 -0.267 1 
midday 0.008 0 
afternoon 0.007 0 

   predicted passing = 1.082 
 

(g) Which factors (predictors) are not statistically associated with passing distance? 

 

Only time of day is unrelated to passing distance with global F = 0.081 and p = .922. 

 

(h) What is the interpretation for the 95% confidence interval for b4 (Curb 0.75 dummy)?  

 

One may be 95% confident that the true mean difference in passing distance between curb distance of 0.25 

meters and curb distance of 0.75 meters lies between -.228 and -.118. 

 

(i) Suppose one wished to perform all pairwise comparisons among curb distances and also among time of day. Using 

the Bonferroni correction, what would be the adjusted Bonferroni alpha (Type 1 error rate) per comparison if the 

familywise error rate is to be .05? 

 

First, determine the number of pairwise comparisons for each variable. With 5 curb distances, there are 5(5-

1)/2 = 10 possible pairwise comparisons. With three times of day, there are 3(3-1)/2 = 3 pairwise 

comparisons. 

 

Next, determine how the family of tests will be defined. Some may opt to group all 10 + 3 comparisons into 

one family of 13 tests. I believe the better approach is to treat the two variables independently and calculate 

Bonferroni corrections separately for the two variables.  

 

For curb distance comparisons, there are 10 possible tests so the Bonferroni alpha would be .05 / 10 = .005.  

 

For time of day, there are 3 possible tests so the Bonferroni alpha would be .05 / 3 = .0167. 

 

(j) Which of the four independent variables appears to be the strongest predictor of passing distances? 

 

There is not always agreement among statisticians how to make this assessment, but one approach is to 

examine the unique variance explained (or predicted) by each predictor. This is measured by ΔR2 values. 



According to these measures, curb distance has the largest ΔR2 value at .043 so it appears to be the best 

predictor of passing distance. One problem with using ΔR2 values to assess variable importance is that it is 

greatly affected by the correlations among predictors (lack of orthogonality among predictors). The more 

predictors are correlated, the weaker will be ΔR2 values and the more difficult to assess unique contributions 

of predictors.  

 

4. Below is a data file containing the following variables for cars taken between 1970 and 1982: 

 

mpg: miles per gallon 
engine: engine displacement in cubic inches 

horse: horsepower 
weight: vehicle weight in pounds 

accel: time to accelerate from 0 to 60 mph in seconds 
year: model year (70 = 1970, to 82 = 1982) 

origin: country of origin (1=American, 2=Europe, 3=Japan) 
cylinder: number of cylinders 

 

SPSS Data: http://www.bwgriffin.com/gsu/courses/edur8132/selfassessments/Week04/cars_missing_deleted.sav      

(Note: There are underscore marks between words in the SPSS data file name.) 

Other Data Format: If you prefer a data file format other than SPSS, let me know. 

 

For this problem we wish to know whether MPG differs among car origins and number of cylinders: 

 

Predicted MPG = b0 + origin of car with appropriate dummy variables + number of cylinders 

 

Origin of car is categorical. Number of cylinders may appear to be ratio, but since observed categories of this variable 

ares limited, it is best to treat this variable as categorical. Note the following number of cylinders reported: 

 
 Number of Cylinders 

  Frequency Percent 
Valid 

Percent 
Cumulative 

Percent 

Valid 3 Cylinders 4 1.0 1.0 1.0 

  4 Cylinders 199 50.9 50.9 51.9 

  5 Cylinders 3 .8 .8 52.7 

  6 Cylinders 83 21.2 21.2 73.9 

  8 Cylinders 102 26.1 26.1 100.0 

  Total 391 100.0 100.0   

 

As the frequency display above shows, the number of cylinders include 3, 4, 5, 6, and 8. However, only 4 cars had 3 

cylinders and only 3 cars had 5 cylinders. Given the small sample sizes for these categories, it is best to remove these 

cases from the regression analysis. There are several ways to accomplish this. Three approaches are (a) manually delete 

these cases after sorting all cases on number of cylinders, (b) telling SPSS to treat these 7 cases as missing values so they 

will not be included in any analysis (use Recode into Same Variable and set 3 Cylinders and 5 Cylinders as system 

missing), or (c) defining 3 and 5 Cylinders as missing values in the variable missing values (see Figure 1 below for how 

this is accomplished in SPSS). Other possibilities also exist.  

 

 

 

 

http://www.bwgriffin.com/gsu/courses/edur8132/selfassessments/Week04/cars_missing_deleted.sav


 

Figure 1: Defining Cylinders 3 and 5 as missing in the “Variable View” tab 

 
 

After defining Cylinders 3 and 5 as missing as illustrated in the Figure 1 above, I re-ran the Frequency command for 

Cylinders and obtained the following results. Note that Cylinders 3 and 5 are now identified as missing and SPSS will 

automatically discard these cases when performing various statistical tests IF the variable Cylinders is used in the 

analysis. If you use dummy variables created from Cylinders, then you need to tell SPSS to select only those cases that 

are complete for Cylinders. Use the Select Cases command as illustrated in Figure 2 below and identify the variable 

Cylinders as the selection filter variable. This tells SPSS to only use cases with complete Cylinder information – missing 

cases are ignored in all analyses.  

 
 Number of Cylinders 

  Frequency Percent Valid Percent 
Cumulative 

Percent 

Valid 4 Cylinders 199 50.9 51.8 51.8 

6 Cylinders 83 21.2 21.6 73.4 

8 Cylinders 102 26.1 26.6 100.0 

Total 384 98.2 100.0   

Missing 3 Cylinders 4 1.0     

5 Cylinders 3 .8     

Total 7 1.8     

Total 391 100.0     

 

 

 

 

 

 

  



Figure 2: Select only those cases with complete Cylinders data 

 
 

 

 

Present an APA styled regression analysis with DV = MPG, IV = origin, and IV = Cylinders (4, 6, and 8 only). Set alpha = 

.01. You will have to create the dummy variables for origins and Cylinders. Also present Scheffé confidence intervals 

comparisons among origins and among cylinders. 

 

Results 

 

Table 1: Descriptive Statistics for MPG, Origin, and Number of Cylinders 

Variable MPG Origin 2 Origin 3 Cylinder 6 Cylinder 8 

MPG  ---     

Origin 2 (Europe) .239* ---    

Origin 3 (Japan) .473* -.222* ---   

Cylinder 6 -.236* -.170* -.163* ---  

Cylinder 8 -.652* -.271* -.296* -.316* --- 

Mean 23.48 .1693 .1953 .2161 .2656 

SD 7.812 .375 .396 .412 .442 

Note: Origin 2 and 3 are dummy variables (1, 0) and Cylinder 6 and 8 are dummy variables (1, 0); n = 384. 

*p<.01 

 
 

  



Table 2: Regression of MPG on Origins and Cylinders 

Variable b se R2 99%CI F t 

Origin   .028  16.31*  

  2 = Europe .166 .740  -1.75. 2.08  0.22 

  3 = Japan 3.683 .706  1.85, 5.51  5.21* 

Number of Cylinders   .322  185.59*  

   6 -8.256 .673  -10.00, -6.51  -12.26* 

   8 -12.934 .679  -14.69, -11.17  -19.03* 

Intercept 27.955 .512  26.62, 29.28  54.54* 

Note: R2 = .67, adj. R2 = .67, F4,379 = 193.21*, MSE = 20.293, n = 384. R2 represents the squared semi-partial 

correlation or the increment in R2 due to adding the respective variable.  

*p < .01. 

 

Table 3: Comparisons of MPG among Vehicle Origins  

Contrast Estimated Mean 

Difference 

Standard Error of 

Difference 

99% Scheffé Corrected CI of 

Mean Difference 

Europe vs USA .166 .74 -2.09, 2.42 

Japan vs USA 3.68* .71 1.53, 5.84 

Japan vs Europe 3.51* .76 1.19, 5.85 

*p < .01, where p-values are adjusted using the Scheffé method. 

 

Table 4: Comparisons of MPG among Number of Cylinders  

Contrast Estimated Mean 

Difference 

Standard Error of 

Difference 

99% Scheffé Corrected CI of 

Mean Difference 

6 vs 4 -8.25* .67 -10.31, -6.20 

8 vs 4 -12.93* .68 -15.01, -10.86 

8 vs 6 -4.68* .67 -6.72, -2.63 

*p < .01, where p-values are adjusted using the Scheffé method. 

 

Results show that there are statistical differences in MPG by both vehicles’ origin and number of cylinders. For 

origins, cars from Japan appear to have about a 3.5 to 3.6 MPG advantage over cars from Europe and the USA 

once number of cylinders are taken into account, and there seems to be little to no difference in MPG 

between cars from Europe and the USA. For number of cylinders, cars with 4 cylinders appear to obtain 8.3 to 

12.9 MPGs more than cars with 6 and 8 cylinders once vehicle origin is controlled, and these differences are 

significant at the .01 level. Additionally, cars with 6 cylinders appear to have a 4.6 MPG advantage over cars 

with 8 cylinders, and this difference is also statistically significant at the .01 level.  

 

 

 

 

 

  



STATA Results 

. xi: reg mpg i.origin i.cylinder, level(99) 

i.origin          _Iorigin_1-3        (naturally coded; _Iorigin_1 omitted) 

i.cylinder        _Icylinder_4-8      (naturally coded; _Icylinder_4 omitted) 

 

      Source |       SS           df       MS      Number of obs   =       384 

-------------+----------------------------------   F(4, 379)       =    193.21 

       Model |  15683.6251         4  3920.90627   Prob > F        =    0.0000 

    Residual |  7691.35491       379  20.2938124   R-squared       =    0.6710 

-------------+----------------------------------   Adj R-squared   =    0.6675 

       Total |    23374.98       383  61.0312793   Root MSE        =    4.5049 

 

------------------------------------------------------------------------------ 

         mpg |      Coef.   Std. Err.      t    P>|t|     [99% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  _Iorigin_2 |   .1660589    .740277     0.22   0.823    -1.750417    2.082535 

  _Iorigin_3 |    3.68331   .7063696     5.21   0.000     1.854616    5.512005 

_Icylinder_6 |  -8.256662   .6734514   -12.26   0.000    -10.00014   -6.513188 

_Icylinder_8 |  -12.93432    .679511   -19.03   0.000    -14.69348   -11.17516 

       _cons |   27.95589    .512617    54.54   0.000     26.62879    29.28298 

------------------------------------------------------------------------------ 

 

. test _Iorigin_2 _Iorigin_3 

 ( 1)  _Iorigin_2 = 0 

 ( 2)  _Iorigin_3 = 0 

 

       F(  2,   379) =   16.31 

            Prob > F =    0.0000 

 

. di 16.21 * (1-.671)/379*2 

.02814296 

 

Note, the above calculation uses this formula to calculate ΔR2 values from F ratios and df. 

ΔR2origin = Forigin * (1-R2 full model) / (df error full model) * (df change) 

 

. test _Icylinder_6 _Icylinder_8 

 ( 1)  _Icylinder_6 = 0 

 ( 2)  _Icylinder_8 = 0 

 

       F(  2,   379) =  185.59 

            Prob > F =    0.0000 

 

. di 185.59 * (1-.671)/379*2 

.32221166 

 

Note, the above calculation uses this formula to calculate ΔR2 values from F ratios and df. 

ΔR2origin = Forigin * (1-R2 full model) / (df error full model) * (df change) 

 

  



. margins cylinder, mcompare(scheffe) pwcompare level(99) 

 

Pairwise comparisons of predictive margins 

Model VCE    : OLS 

 

Expression   : Linear prediction, predict() 

 

--------------------------- 

             |    Number of 

             |  Comparisons 

-------------+------------- 

    cylinder |            3 

--------------------------- 

 

-------------------------------------------------------------- 

             |            Delta-method          Scheffe 

             |   Contrast   Std. Err.     [99% Conf. Interval] 

-------------+------------------------------------------------ 

    cylinder | 

     6 vs 4  |  -8.256662   .6734514     -10.31297   -6.200355 

     8 vs 4  |  -12.93432    .679511     -15.00913   -10.85951 

     8 vs 6  |  -4.677659   .6700444     -6.723563   -2.631755 

-------------------------------------------------------------- 

 

. margins origin, mcompare(scheffe) pwcompare level(99) 

 

Pairwise comparisons of predictive margins 

Model VCE    : OLS 

 

Expression   : Linear prediction, predict() 

 

--------------------------- 

             |    Number of 

             |  Comparisons 

-------------+------------- 

      origin |            3 

--------------------------- 

 

-------------------------------------------------------------- 

             |            Delta-method          Scheffe 

             |   Contrast   Std. Err.     [99% Conf. Interval] 

-------------+------------------------------------------------ 

      origin | 

     2 vs 1  |   .1660589    .740277     -2.094293     2.42641 

     3 vs 1  |    3.68331   .7063696      1.526491    5.840129 

     3 vs 2  |   3.517251   .7635124      1.185953    5.848549 

--------------------------------------------------------------  

 

 Descriptive Statistics 

  Mean Std. Deviation N 

Miles per Gallon 23.48 7.812 384 

origin2 .1693 .37548 384 

origin3 .1953 .39696 384 

cylinder6 .2161 .41215 384 

cylinder8 .2656 .44224 384 

 
  



 
 Correlations 

    
Miles per 

Gallon origin2 origin3 cylinder6 cylinder8 

Miles per Gallon Pearson Correlation 1 .239(**) .473(**) -.236(**) -.652(**) 

Sig. (2-tailed)   .000 .000 .000 .000 

N 384 384 384 384 384 

origin2 Pearson Correlation .239(**) 1 -.222(**) -.170(**) -.271(**) 

Sig. (2-tailed) .000   .000 .001 .000 

N 384 384 384 384 384 

origin3 Pearson Correlation .473(**) -.222(**) 1 -.163(**) -.296(**) 

Sig. (2-tailed) .000 .000   .001 .000 

N 384 384 384 384 384 

cylinder6 Pearson Correlation -.236(**) -.170(**) -.163(**) 1 -.316(**) 

Sig. (2-tailed) .000 .001 .001   .000 

N 384 384 384 384 384 

cylinder8 Pearson Correlation -.652(**) -.271(**) -.296(**) -.316(**) 1 

Sig. (2-tailed) .000 .000 .000 .000   

N 384 384 384 384 384 

**  Correlation is significant at the 0.01 level (2-tailed). 
 
 
 

 

Appendix 

 

Question 2 

 

Review: Determining Bonferroni and Scheffé critical t values for confidence interval construction.   

 

Study consisted of n = 72 observations on heart rate across four medications.  

 

DV = Heart rate = beats per minute  

IV = Blood Pressure Medication = four drugs prescriptions (Losartan, Ziac, Lisinopril [12.5mg], and Lisinopril [40mg]) 

 

Wish to maintain a familywise error rate of .05.  

 

Bonferroni adjusted critical t ratio: 

 

(a) Adjusted alpha per comparison is .05/6 = .083333 (divide by 6, the number of possible pairwise comparisons 

among four drug treatments) 

(b) Study degrees of freedom is n – k – 1 where k is the number of dummy variables (number of groups minus 1), 

so 76 – 3 – 1 = 72 

(c) Then use Excel critical t function to find the critical t-value: 

 

=T.INV.2T(adjusted alpha, df) 

=T.INV.2T(.008333, 72) 

= ± 2.7129 

 

Scheffé adjusted critical t ratio: 



 

(a) Since the Scheffé adjusted critical t is based upon an F ratio, we must determine the critical F by first finding 

the model degrees of freedom 

 

df1 = J – 1 = 4 – 1 = 3 

df2 = n – k – 1 = 76 – 3 – 1 = 72 

 

where J is the number of groups, and k is the number of dummy variables in the regression equation. 

 

(b) Next find the critical F ratio for a familywise error rate of .05. This can be found using Excel 

 

=F.INV.RT(alpha level, df1, df2) 

=F.INV.RT(0.05,3,72) 

= 2.7318 

 

(c) Next convert this critical F ratio to a Scheffé adjusted F ratio 

 

Scheffé F = (J – 1) (original critical F) 

Scheffé F = (3) (2.7318) 

Scheffé F = 8.1954 

 

(d) Next convert this Scheffé F ratio to a critical Scheffé t value by taking the square root of the Scheffé F: 

 

Scheffé t = √Scheffé F  

Scheffé t = √8.1954  

Scheffé t = ±2.8627 

 

Now we have the critical t-value used to test the six possible pairwise comparisons among four drug treatments with an 

overall familywise error rate of .05 or less.  


