
Multiple Linear Regression with Qualitative and 
Quantitative Independent Variables  

 
 Multiple regression with both quantitative and qualitative independent variables proceeds in a 
manner identical to that described previously for regression. The primary difference, now, is how one 
interprets the estimated regression coefficients. 
 

The Regression Equation and Coefficient Interpretation 
 
 For expository purposes, only one qualitative and one quantitative variable will be described in 
the following discussion. Realize that the use of more variables is a simple extension of the procedures 
discussed. For the hypothetical example, assume that a researcher wishes to know whether one of three 
conditions provides higher levels of mathematics achievement: peer tutoring, jigsaw, or think-pair-share. 
The researcher also has standardized measures of students' academic ability in the form of IQ scores. 
Thus, the researcher has one categorical variable, type of instruction, and one quantitative variable, IQ 
scores. The question of interest is whether achievement levels differ among types of instruction once 
intelligence is taken into account. In this example we are most interested in differences among types of 
instruction, and IQ is entered only as a control variable, i.e., we wish to statistically control or equate 
groups. In analysis of covariance (ANCOVA) parlance, IQ is called a covariate. 
 The sample regression equation is thus formulated as follows: 
 
Yi = b0 + b1JIG1i + b2PAIR2i + b3IQ3i + ei, (12)
 
where b0 is the sample intercept; b1 is the partial regression coefficient for the adjusted difference 
between mean levels of achievement between peer-tutoring (the reference category) and jigsaw; b2 is the 
partial difference between think-pair-share and peer-tutoring; b3 is partial relationship between IQ and Y; 
and ei is the sample error term. 
 What is meant by the term adjusted? To understand, first consider the following research 
scenario. Assume that the three groups receiving the three treatments do not have identical levels of 
intelligence. For example, suppose the students in the jigsaw group have an average IQ level of 110, the 
students in the think-pair-share group have an average IQ level of 105, and the peer tutoring group an IQ 
level of 100. Based upon this information, which group do you think would perform best on the 
achievement test? Probably the jigsaw group because they have the highest IQ level.  
 Entering IQ into the multiple regression equation allows one to statistically control for the effects 
of IQ, and thus gain a better estimate of the true difference in achievement due to the effects of 
instruction. That is, multiple regression allows us to partial-out the effects of IQ so that these effects will 
no longer be confounded with instruction. So when one compares mean differences in instruction, such as 
the difference between jigsaw and peer-tutoring, the mean difference comparison should be based upon 
the partialed effects (IQ partialed-out), and these partialed estimates of the mean differences are based 
upon the adjusted means for the groups. Adjusted means are estimated means in achievement, controlling 
for IQ. 
 Adjusted means may be obtained by substituting into the sample regression equation the sample 
mean of the covariate or covariates. For example, the sample data for the hypothetical research question is 
given in Table 1.  
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Table 1: Fictional Achievement Scores by Type of Instruction and IQ 
Achievement Instruction IQ 

73 peer 101 
72 peer 100 
70 peer 105 
75 peer 95 
80 jig 100 
79 jig 107 
83 jig 101 
84 jig 99 
87 pair 104 
89 pair 108 
88 pair 103 
87 pair 105 

 
The sample regression equation for this data is 
 
Y' = 110.275 + 9.565(JIG) + 17.04(PAIR) + -0.377(IQ). (13)
 
Recall previous discussions of calculating predicted means for each of the three groups with dummy 
variables in regression. For instance, the predicted mean for the peer-tutoring group would be the 
constant, or 110.275, and the predicted mean for the jigsaw group would be b0 + b1 or 110.275 + 9.565 = 
119.84.  
 Since these predicted means are well above the actual scores obtained—which range from 70 to 
89—it should be obvious the procedure of obtaining predicted means is flawed because the statistical 
effects of IQ were not take into account. To correct this problem, now one must take into account the 
effect of IQ on the predicted means. To do so requires only that the regression coefficient corresponding 
to the covariate be multiplied by the covariate sample mean, e.g., b3, the coefficient for IQ, should be 
multiplied by the sample mean of IQ, which is 102.333. For example, the adjusted mean for the peer 
tutoring group is: 
 
Y' = 110.275 + 9.565(0) + 17.04(0) + -0.377(102.333), 
Y' = 110.275 +                                        -38.58, 
Y' = 71.695. 
 
The adjusted mean for the jigsaw group is: 
 
Y' = 110.275 + 9.565(1) + 17.04(0) + -0.377(102.333), 
Y' = 110.275 + 9.565(1)                  + -38.58, 
Y' = 119.84 + -38.58, 
Y' = 81.26, 
 
and the adjusted mean for the think-pair-share group is: 
 
Y' = 110.275 + 9.565(0) + 17.04(1) + -0.377(102.333), 
Y' = 110.275                  + 17.04(1) + -38.58, 
Y' = 127.315 + -38.58, 
Y' = 88.735. 
 
 The adjusted means just calculated reflect the statistical effects of IQ upon achievement 
controlling for type of instruction. Table 2 provides both the adjusted and observed means for each group. 
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Note that only slight differences exist; this suggests that the average level of IQ was about the same for 
the three groups since little difference exists between observed and adjusted means. 
 
Table 2 
Group Observed Mean Adjusted Mean 
Peer 72.50 71.70 
Jigsaw 81.50 81.26 
Pair 87.75 88.74 
 
 Regression coefficients are interpreted in a manner described previously under multiple 
regression. The coefficients for dummy variables represent the mean difference between the reference 
group and the group represented by the dummy, controlling for the effect of the covariates or other 
independent variables in the regression model. For example, the difference between the jigsaw group and 
the peer tutoring group is estimated to be 9.565, which is the same difference between the adjusted means 
for the two group, within rounding error, i.e., 81.26 - 71.70 = 9.56. And the coefficient for IQ, b3, is 
simply the estimated relationship between IQ and achievement, controlling for instruction (note that in 
this case, the relationship is expected to be negative!). 
 

Overall Model Fit and Statistical Inference 
 
 The usual measures of fit and inference for the overall models continues to apply here. 
 

Global Effects, ΔR2, and the Partial F Test of ΔR2  
 
 Statistical inference regarding the global effect, as measured by ΔR2(Xk), continues to hold here. 
To illustrate, the overall statistical effect of instruction upon achievement will be tested. The reduced 
model contains only IQ: 
 
Yi = b0 +            b3IQ3i + ei, (14)
 
and the full model contains all variables, which, in this case, is instruction and IQ: 
 
Yi = b0 + b1JIG1i + b2PAIR2i + b3IQ3i + ei. (12)
 
The null hypothesis for the instruction effect is 
 
H0: ΔR2(instruction) = ΔR2(JIG, PAIR) = 0.00. 
 
This null states that the combination of dummies representing instruction, JIG and PAIR, do not make an 
increase in the overall model fit as measured by the model R2. 
 The resulting statistics from the reduced model are: R2

r = .373 and df2r = 10. The full model 
statistics needed are: R2

f = .964 and df2f = 8. The increment in the model R2 due to adding instruction to 
the model, denoted ΔR2(JIG,PAIR) or ΔR2(instruction), is   
 
ΔR2(instruction) = R2

f - R2
r = .964 - .373 = 0.591. 

 
Degrees of freedom for this test are 
 
df1 = df2r - df2f = 10 - 8 = 2, and 
df2 = df2f = 8. 
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Calculation of the partial F statistic follows: 
 

F = 
ΔR2(Xk)/(df2r - df2f)

(1-R2
f)/df2f

  

 

  = 
.591/(10-8)
(1 - .964)/8 = 

.2955
(.036)/8 = 

.2955
0.0045  =  65.66. 

 
The critical value at the 5% significance level is .05F2,8 = 4.46. Since 65.66 is clearly larger than 4.46, the 
null is rejected, and one may conclude that inclusion of instruction statistically reduces variance error in 
Y.  
 

Inferential Procedures for Regression Coefficients 
 
 Following the reject of overall model null, H0: R2 = 0.00, one should next test the partial effect of 
each distinct independent variable. This has just been illustrated for instruction using ΔR2(X2,X3) and the 
partial F test. Since the remaining variable, IQ, is quantitative, the simple t-ratio will suffice for testing 
H0: β3 = 0.00.  
 

Pairwise Comparisons Among Categories  
and Control of the Familywise Type 1 Error Rate 

 
 Since instruction is a categorical variable with more than two categories, some type of control 
must be introduced to check the possible inflation of the Type I error rate. Assuming the experiment was 
developed with the express purpose of comparing these three techniques, one may use the Bonferroni 
procedure for control of αfw. 
 There are a total of three pairwise comparisons, so the αfw. will be .05/3 = 0.0167, or, similarly, 
the corrected Bonferroni critical t is ± 3.005. So when constructing a table of comparisons, the calculated 
t-ratio for each comparison, where t = estimated mean difference/standard error of difference, should be 
compared against the Bonferroni critical t. Also, one may construct .95CIs using the Bonferroni 
adjustment for each comparison. 
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Reporting Multiple Regression 
 
 The SPSS results for this data analysis are reported below. 
                                                                                 
           * * * *   M U L T I P L E   R E G R E S S I O N   * * * * 
 
             Mean  Std Dev  Label 
ACH        80.583    6.762 
JIG          .333     .492 
PAIR         .333     .492 
IQ        102.333    3.701 
 
N
 
 of Cases =    12 

Correlation, 1-tailed Sig: 
 
                ACH        JIG       PAIR         IQ 
 
ACH           1.000       .100       .783       .373 
               .          .378       .001       .116 
 
JIG            .100      1.000      -.500      -.116 
               .378       .          .049       .359 
 
PAIR           .783      -.500      1.000       .532 
               .001       .049       .          .037 
 
IQ             .373      -.116       .532      1.000 
               .116       .359       .037       . 
 
Multiple R           .98189 
R Square             .96410 
Adjusted R Square    .95064 
Standard Error      1.50226 
 
Analysis of Variance 
                    DF      Sum of Squares      Mean Square 
Regression           3           484.86232        161.62077 
Residual             8            18.05435          2.25679 
 
F =      71.61523       Signif F =  .0000 
 
---------------------- Variables in the Equation ----------------------- 
 
Variable              B        SE B     95% Confdnce Intrvl B       Beta 
JIG            9.565217    1.085107     7.062958    12.067476    .696516 
PAIR          17.039855    1.272936    14.104462    19.975248   1.240801 
IQ             -.376812     .147664     -.717326     -.036297   -.206246 
(Constant)   110.275362   14.822398    76.094887   144.455838 
 
 
----------- in ------------ 
 
Variable           T  Sig T 
JIG            8.815  .0000 
PAIR          13.386  .0000 
IQ            -2.552  .0341 
(Constant)     7.440  .0001 
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Table 3 
Descriptive Statistics and Correlations Among Achievement, IQ and Type of Instruction 

Variable  Correlations   
 Achievement Jigsaw Pair IQ 

Achievement ---    
Jigsaw  .10 ---   
Pair  .78* -.50 ---  
IQ  .37 -.12 .53  --- 
Mean 80.58 0.33 0.33 102.33 
SD 6.76 0.49 0.49 3.70 
Note. Jigsaw and Pair are dummy variables representing students in the jigsaw group (1 = jigsaw, 0 = 
others) and think-pair-share group (1 = pair, 0 = others); n = 12. 
*p<.05. 
 
Table 4 
Regression of Mathematics Achievement Scores on Instruction and IQ 

Variable b se ΔR2 95%CI F t 
IQ  -0.38  0.15 .03 -0.72, -0.04  -2.55* 
Instruction   .83  91.92*  
   Jigsaw   9.57  1.09  7.06, 12.07  8.82* 
   Pair  17.04  1.27  14.10, 19.98  13.39* 
Intercept 110.29 14.82  76.10, 144.46  7.44* 
Note. R2 = .96, adj. R2 = .95, F3,8 = 71.62*, MSE = 2.26, n = 12. ΔR2 represents the semi-partial multiple 
correlation or the increment in R2 due to adding the respective variable. Jigsaw and Pair are dummy 
variables representing students in the jigsaw group (1 = jigsaw, 0 = others) and think-pair-share group (1 
= pair, 0 = others) 
*p<.05. 
 
Table 5 
Comparisons of Mathematics Achievement Scores Among Instruction Types 

Contrast Estimated Adjusted 
Mean Difference 

Standard Error of 
Difference 

Bonferroni Adjusted 
.95CI 

Jigsaw vs. Peer  9.565* 1.085 12.83,   6.30 
Pair vs. Peer 17.040* 1.273 20.87,  13.21 
Jigsaw vs. Pair -7.475* 1.166 -3.97, -10.98 
*p<.05, where p-values are adjusted using the Bonferroni method. 
 
Both intelligence and instruction were statistically related to mathematics achievement. All pairwise 
comparisons were performed and all were statistically significant at the 5% level using the Bonferroni 
adjustment. Students in the think-pair-share strategy showed the highest levels of achievement, and 
students using peer tutoring demonstrated the lowest levels of achievement. 
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Exercises 
 
Assume all comparisons were planned in advanced. 
 
(1) According to the leadership literature, there are a number of different leadership styles. Listed below 
are scores obtained from an instrument designed to measure a particular leadership style, which will be 
referred to as style X. Of interest is whether X differs by school district type in terms of urbanity, and by 
years of experience. A stratified random sample of school principals were selected from three district 
types (mostly urban, mostly suburban, and mostly rural).  
 The scores on style X range from 100 to 0. The closer the score to 100, the more the respondent 
conforms to style X, while the closer the score to 0, the less the respondent conforms to style X. 
 Is there any evidence that X differs among the three district types, once years of experience is 
taken into account?  
 

Years of 
Experience 

District Type Style X 

21 urban 85 
20 urban 98 
18 urban 75 
10 urban 63 
17 urban 91 
5 urban 49 
4 urban 62 
7 suburban 49 
1 suburban 48 
9 suburban 56 

10 suburban 78 
2 suburban 35 
4 suburban 50 
1 rural 33 

16 rural 95 
3 rural 26 
2 rural 11 
2 rural 33 
8 rural 25 

14 rural 65 
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(2) A researcher is interested in learning whether frequency of reading at home to elementary-aged 
children produces differential effects on reading achievement. After obtaining information from a 
randomly selected sample of parents about this behavior, the following classifications and standardized 
achievement scores were recorded. (Note: frequency classifications as follows: a = less than once per 
month, b = once to three times per month, c = more than three times per month.) In addition to reading 
frequency, information regarding the family's status concerning whether or not the family's child receives 
either free or reduced lunch is recorded as a proxy for SES. Also, students' IQ scores were recorded. 
 

IQ SES Freq. of Reading Achievement 
100 4 a 48 
101 3 a 37 
98 3 a 47 

105 5 a 65 
86 4 b 57 
92 3 b 39 

117 5 b 49 
99 2 b 45 

105 5 c 61 
93 3 c 55 

101 5 c 51 
103 1 c 30 

Note. SES scores range from al a low of 1 to a high of 5. 
 
Is frequency of reading at home related to student reading achievement once SES and IQ are taken into 
account? 
 
(3) An administrator wishes to know whether student behavioral problems can be linked to student 
performance. If students were suspended or reprimanded more than once, they are classified as having 
behavioral problems. In addition, each student's SES is known, and should be taken into account. The 
administrator randomly selects 13 students and collects the appropriate data.  
 

Student GPA Student SES Behavioral Problems 
Bill 3.33 5 n 
Bob 1.79 1 y 
Stewart 2.21 4 n 
Linda 3.54 5 y 
Lisa 2.89 4 n 
Ann 2.54 3 n 
Fred 2.66 5 y 
Carter 1.10 1 y 
Bill 3.10 4 n 
Sue 2.10 2 y 
Kara 2.07 2 y 
Loser 2.31 3 n 
Kathy 3.67 4 n 
Note. SES scores range from a low of 1 to a high of 5. 
 
 
Answers to be added. 
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Analysis of Covariance (ANCOVA) Results for Sample Data 
       
 ANOVA VARIABLES=ach BY instruct(1 3) WITH  iq /MAXORDERS ALL 
   /STATISTICS REG /METHOD UNIQUE /FORMAT LABELS . 
 
            * * *  A N A L Y S I S   O F   V A R I A N C E  * * * 
 
                 ACH 
            by   INSTRUCT 
            with IQ 
 
                 UNIQUE sums of squares 
                 All effects entered simultaneously 
 
 
                                   Sum of                 Mean             Sig 
Source of Variation               Squares     DF        Square       F    of F 
 
Covariates                         14.696      1        14.696     6.512  .034 
   IQ                              14.696      1        14.696     6.512  .034 
 
Main Effects                      414.904      2       207.452    91.923  .000 
   INSTRUCT                       414.904      2       207.452    91.923  .000 
 
Explained                         484.862      3       161.621    71.615  .000 
Residual                           18.054      8         2.257 
 
Total                             502.917     11        45.720 
 
Covariate   Raw Regression Coefficient 
 
IQ              -.377 
 
 
12 cases were processed. 
0 cases (.0 pct) were missing. 
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OLS Assumptions  
and Assessment of Violations 

 
 Linear regression requires several assumptions in order for proper coefficient estimates be 
produced. The assumptions are: 
 
(1) Fixed X: This means that the values of X are known and can be held constant or controlled by the 
researcher, such as treatments in an experiment. Usually in correlational or non-experimental research, 
such as data derived from surveys, this assumption is not met. Fortunately, results obtained from linear 
regression do not necessarily need for this assumption to be held. In short, violations of this assumption 
typically are not serious. 
 
(2) No Measurement Error for X: This means that the instruments used to derive scores for X are 
perfectly reliable (and valid). Of course this will never happen in practice. Unreliable measures result in 
increases in coefficient standard errors, and therefore a decrease in precision. As a result, the power of 
statistical tests is decreased—thus it is more difficult to obtain statistically significant results as 
measurement error (or unreliability) increases. Also, regression coefficients for X will tend to be 
underestimated, in absolute value, thus further decreasing power and precision. When multiple X's are 
present in the regression model, the effects of measurement error are less predictable, but very 
problematic in terms of power and precision. 
 
(3) Regression of Y on X is Linear: This means that the relationship between X and Y can be depicted 
using a straight line. This assumption is not stringent, and non-linear models involving X and Y will be 
discussed under the topic of polynomial regression. In short, should a non-linear or curvilinear regression 
situation arise, it is very easy to alter the regression equation to better model this non-linearity. 
 
(4) Assumptions for Errors: Recall that residuals, or errors, in the regression equation are defined as Y' - 
Y, predicted Y minus observed Y. Residuals, then, simply represent variation in Y left over from that 
which is explained using X (or X's). For proper OLS estimation, the following assumptions concerning 
the residuals are needed: 
 
 (a) mean of errors is zero: For each level of X, the mean of the residuals should be equal to zero. 
 
 (b) errors are uncorrelated: Each residual is uncorrelated with other residuals. This assumption 
simply means that the observations of Y are independently distributed. Should the data be derived in a 
manner in which correlated observations are collected, then OLS is not the most efficient estimation 
procedure and alternative regression techniques will be needed. 
 
 (c) homoscedasticity: For each level of X, the variance of the residuals should be constant (or 
approximately equal). 
 
 (d) errors not correlated with X's: The errors should be uncorrelated with observations on X. If 
not, then additional IVs are needed in the model to remove this lack of independence. 
 
(5) Normality: For statistical tests in regression, the residuals are assumed to be normally distributed for 
each level of X. Normality is only needed for inferential tests, and does not affect OLS estimation. 
Normality typically is not a problem, even for severely non-normal distributions, due to the central limit 
theorem. 
 
 Another very important error in regression is the specification error. Specification errors occur 
when the model specified by the regression equation is not correct, thus resulting in model 
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misspecification. Model misspecification refers to the "(1) omission of relevant variables from the 
equation; (2) inclusion of irrelevant variables in the equation; [or] (3) specifying that the regression is 
linear when it is curvilinear" (Pedhazur, 1982, p. 35). Misspecification also results when one fails to 
properly model interactions between IVs (to be discussed later). Model misspecification will lead to 
errors in hypothesis testing and interpretation of regression coefficients. This is a serious problem as 
model misspecification could potentially lead a researcher to make unwarranted conclusions. 
 Misspecification is the most common problem in all regression analyses. Perhaps the best way to 
avoid misspecification is to (1) think, (2) understand the theory behind the model, and (3) examine your 
data. Carefully consider possible relationships among potential X's and Y, and always consider 
interactions among the X's and possible curvilinear relationships. 
 
 The standard procedure for assessing whether any of the above assumptions may be violated for a 
given regression requires that residuals and predicted values be plotted in a scatterplot. Both should be in 
standardized form. Specifically, the residuals should be Studentized Residuals (SRESID), and the 
predicted values should be in Z score form (e.g., ZPRED in SPSS). 
 Once the regression is completed, SPSS saves the predicted and residuals values into new 
columns that may be plotted together using the GRAPH command. On the Y axis should be SRESID and 
on the X axis should be ZPRED. 
 The pattern of dots in the scatterplot should form, roughly, a rectangle with no clear pattern or 
grouping of the scatter. Below is an example of a residual plot in which no violations are apparent. 
 
 

Violation Assessment Plot
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Assessing Assumption Violations

(No Apparent  iolations)

Standardized Predicted Value

210-1-2-3

St
ud
en
ti
ze
d 
Re
si
du
al

2

1

0

-1

-2

-3

V

 
 
 
 The scatter below shows a clear violation of the linearity assumption. 
 

Assessing Assumption Violations

(Correct Fit Problem--Not Linear)

Standardized Predicted Value

210-1-2-3

St
ud
en
ti
ze
d 
Re
si
du
al

2

1

0

-1

-2

-3

 

EDUR 8132  10/19/2010  2:28:29 PM  12 



This scatterplot reveals a possible violation with constant variance (homoscedasticity). 
 

Assessing Assumption Violations

(Heteroscedasticity)
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The scatterplot below reveals what may be a violation of the normality assumption. Note that most points 
are below 0.00 on the vertical axis. 

Assessing Assumption Violations

(Not Normal)
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 The scatterplot below was taken from the example data on ratings and grades. It is difficult to 
determine whether a violation exists, therefore the lack of clear evidence suggests that regression will be 
appropriate for this data. 

Assessing Assumption Violations

(Student ratings and percent A's)
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 Interactions 
 
 An interaction occurs when an independent variable's statistical effects (or differences) upon the 
dependent variable vary or differ across levels of a second independent variable. For example, if one were 
interested in examining the relationship between SES, sex, and the number of behavioral problems 
displayed among 5th grade students, one may find a pattern such as the one depicted in Figure 1. 
 
Figure 1 
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As illustrated in Figure 1, the difference in behavioral problems between males and females changes 
across levels of SES; thus, there is an interaction between SES and sex.  
 Note that an interaction only occurs between independent variables; the dependent variable does 
not interact with an independent variable. There are two types of interactions, ordinal and disordinal. 
Figure 1 illustrates an ordinal interaction. An ordinal interaction occurs when one group's predicted means 
is always greater than another group's predicted means. For example, the predicted male means are 
always greater than predicted female means, yet the differences between males and females varies by 
SES, therefore an ordinal interaction results. 
 
Figure 2 
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 When two or more group means switch or cross, a disordinal interaction occurs. Figure 2 
illustrates a disordinal interaction. Note that predicted male means are higher for low and middle levels of 
SES, but the predicted female mean for high levels of SES is greater than the predicted male mean.  
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 Figures 3a and 3b, which contain no interactions, are included as a reference. Note that the 
differences between males and females is constant in both a and b, i.e., the sex difference does not vary 
by SES level. 
 
Figure 3 
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The Regression Equation for Interaction Between  
Two Categorical IVs 

 
 Assume that we are interested in modeling the number of behavioral problems displayed by 5th 
grade students, and the two variables used to model this behavior are sex and SES. We may expect that 
the differences between males and females will not be constant for each level of SES; therefore an 
interaction is expected. The sample regression model without the interaction is  
 
Y' = b0 + b1MALE + b2HIGH + b3LOW  (1)
 
where MALE is a dummy coded 1 if the student is male, and 0 if female; HIGH is a dummy indicating 
whether the student has a high level of SES (1) or not (0); and LOW is a dummy coded 1 for students will 
lower levels of SES and 0 if otherwise.  
 To model an interaction, one must simply create a multiplicative term, i.e., for two independent 
variables, X1 and X2, the interaction is found by including in the regression model the following product: 
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interaction = X1 * X2. 
 
When one or more of the independent variables is categorical, each dummy representing the variable must 
be multiplied. For the current example, there will be two multiplicative terms to include in the regression 
model: 
 
INT1 = MALE * HIGH, 
 
and 
 
INT2 = MALE * LOW. 
 
Entering these terms into the sample regression model results in the following equations: 
 
Y' = b0 + b1MALE + b2HIGH + b3LOW + b4INT1 + b5INT2  (2)
 
or  
 
Y' = b0 + b1MALE + b2HIGH + b3LOW + b4(MALE*HIGH) + b5(MALE*LOW).  (3)
 
Sample data for this model is given in Table 1. 
 
Table 6 
Fictional Data Demonstrating Interaction 

behave sex ses MALE HIGH LOW MALE*HIGH MALE*LOW 
9 m h 1 1 0 1 0 

11 m h 1 1 0 1 0 
12 m h 1 1 0 1 0 
10 m h 1 1 0 1 0 
4 f h 0 1 0 0 0 
5 f h 0 1 0 0 0 
6 f h 0 1 0 0 0 
4 f h 0 1 0 0 0 
5 m m 1 0 0 0 0 
6 m m 1 0 0 0 0 
4 m m 1 0 0 0 0 
6 m m 1 0 0 0 0 
2 f m 0 0 0 0 0 
4 f m 0 0 0 0 0 
3 f m 0 0 0 0 0 
3 f m 0 0 0 0 0 
6 m l 1 0 1 0 1 
7 m l 1 0 1 0 1 
5 m l 1 0 1 0 1 
5 m l 1 0 1 0 1 
3 f l 0 0 1 0 0 
2 f l 0 0 1 0 0 
1 f l 0 0 1 0 0 
3 f l 0 0 1 0 0 
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Hypothesis Testing 
 
 As usual, the first hypothesis to test is that of the overall model: H0: R2 = 0.00. If this is rejected, 
the next hypothesis to test is that of the interaction effect, i.e., H0: ΔR2(interaction) = 0.00 or H0: 
ΔR2(MALE*HIGH, MALE*LOW) = 0.00. This will be illustrated for the sample data. 
 For the sample data, the reduced model R2 is .836 with df2 = 20. The full model R2 is .9035 with 
df2 = 18, so 
 
ΔR2 = .9035 - .836 = 0.0675. 
 
The partial F ratio is 
 

F = 
ΔR2

(Xk)/(df2r - df2f)
(1-R2

f)/df2f
  

 

  = 
.0675/(20-18)
(1 - .9035)/18 = 

0.0337
0.0054  =  6.24. 

 
which is statistically significant at the .05 level. 
 When an interaction is statistically significant, one need not perform significance testing for the 
independent variables associated with the interaction, i.e., one need not compute ΔR2 and partial F tests 
for independent variables associated with the interaction. 
 

Coefficient Interpretation 
 
 With interactions, one cannot simply interpret main effects; that is, one cannot simply rely upon 
the regression coefficients produced for the two independent variables. When interpreting the results, one 
must take into account the interaction. For example, consider interpretations for the current sample data. 
The regression results are 
 
Y' = 3.00 + 2.25(MALE) + 1.75(HIGH) + -0.75(LOW)  
 + 3.50(MALE*HIGH) + 1.25(MALE*LOW).  
 
One might be tempted to claim that the estimated difference between males and females is 2.25 since this 
is the main effect of sex. However, since there are interactions present between sex and SES, one must 
examine the simple main effects for each variable.  
 What is meant by simple main effects? This means that one must interpret the effects of sex for 
each level or category of the variable in which sex interacts. That is, indicate whether males or females 
differ, and by how much, for each unique level of SES. Similarly, for each sex, indicate how the SES 
levels differ.  
 The easiest way to show these effects is to calculate the predicted means for each cell or 
combination of variables and to plot these on a graph like Figures 1 through 3. For example, the predicted 
means for males and females for each level of SES can be found using the regression equation, as 
demonstrated below: 
 

EDUR 8132  10/19/2010  2:28:29 PM  18 



Y' = 3.00 + 2.25(MALE) + 1.75(HIGH) + -0.75(LOW)  
 + 3.50(MALE*HIGH) + 1.25(MALE*LOW).  
 
SES = LOW 
SEX = MALE 
 
Y' = 3.00 + 2.25(1) + 1.75(0) + -0.75(1) + 3.50(0) + 1.25(1).  
Y' = 3.00 + 2.25 - 0.75 + 1.25 = 5.75.  
 
SES = LOW 
SEX = FEMALE 
 
Y' = 3.00 + 2.25(0) + 1.75(0) + -0.75(1) + 3.50(0) + 1.25(0).  
Y' = 3.00  - 0.75 = 2.25.  
 
SES = MIDDLE 
SEX = MALE 
 
Y' = 3.00 + 2.25(1) + 1.75(0) + -0.75(0) + 3.50(0) + 1.25(0).  
Y' = 3.00 + 2.25 = 5.25.  
 
SES = MIDDLE 
SEX = FEMALE 
 
Y' = 3.00 + 2.25(0) + 1.75(0) + -0.75(0) + 3.50(0) + 1.25(0).  
Y' = 3.00  = 3.00.  
 
SES = HIGH 
SEX = MALE 
 
Y' = 3.00 + 2.25(1) + 1.75(1) + -0.75(0) + 3.50(1) + 1.25(0).  
Y' = 3.00 + 2.25 + 1.75 + 3.50 = 10.5.  
 
SES = HIGH 
SEX = FEMALE 
 
Y' = 3.00 + 2.25(0) + 1.75(1) + -0.75(0) + 3.50(0) + 1.25(0).  
Y' = 3.00 + 1.75  = 4.75.  
 
So the predicted means are: 
 
Table 7 

  SES  
SEX Low Middle High 

Male 5.75 5.25 10.5 
Female 2.25 3.00 4.75 
 
which can be better illustrated via a graph, such as Figure 4. 
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Figure 4 
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 Now the only thing left to do test the statistical significance of the various comparisons. This is 
easily accomplished using the computer procedure to calculate standard errors. For example, the 
difference between males and females, when SES is held constant at the middle level is b1 = 2.25, which 
has a standard error of 0.707. In Table 2 the difference between males and females for each level of SES 
is calculated and reported. 
 
Table 8 

  SES  
SEX Low Middle High 

Male 5.75 5.25 10.5 
Female 2.25 3.00 4.75 
Sex Difference 
(standard error) 

3.50 
(0.707) 

2.25 
(0.707) 

5.75 
(0.707) 

 
To find the estimated difference between males and females for low levels of SES, simply re-specify the 
regression model so that low SES represents the omitted reference group. When doing this, be careful that 
the proper interaction terms are also included (in this case, no interactions based upon the LOW dummy 
should be included). For example, to find the estimated difference between the sexes for low levels of 
SES, the revised regression equation is 
 
Y' = b0 + b1MALE + b2HIGH + b3MIDDLE  
            + b4(MALE*HIGH) + b5(MALE*MIDDLE).  

(4)

 
The resulting statistics are: 
 
Y' = 2.25 + 3.50(MALE) + 2.50(HIGH) + 0.75(MIDDLE)  
 + 2.25(MALE*HIGH) + -1.25(MALE*MIDDLE), 
 
and the standard error for the difference between men and women is 0.707. To find the estimated 
difference and standard error for sex at high levels of SES, the following equation should be used:  
 
Y' = b0 + b1MALE + b2MIDDLE + b3LOW  
        + b4(MALE*MIDDLE) + b5(MALE*LOW).  

(5)

 
The resulting statistics are: 
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Y' = 4.75 + 5.75(MALE) -1.75(MIDDLE) -2.50(LOW)  
 -3.50(MALE*MIDDLE) -2.25(MALE*LOW). 
 
One may also compare the three levels of SES for each distinct sex category using a method similar to the 
one just described. For this set of comparisons, either Scheffé or Bonferroni should be used for each 
comparison set (i.e., each set of comparisons per sex category). 
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Example Output 
 
 Results for the first regression, equation (3), are below. 
 
Listwise Deletion of Missing Data 
           Mean  Std Dev  Label 
BEHAVE    5.250    2.848 
HIGH       .333     .482 
LOW        .333     .482 
MALE       .500     .511 
MA_LOW     .167     .381 
MAL_HI     .167     .381 
 
N of Cases =    24 
 
Multiple R           .95052 
R Square             .90349 
Adjusted R Square    .87668 
Standard Error      1.00000 
 
Analysis of Variance 
                    DF      Sum of Squares      Mean Square 
Regression           5           168.50000         33.70000 
Residual            18            18.00000          1.00000 
 
F =      33.70000       Signif F =  .0000 
 
---------------------- Variables in the Equation ----------------------- 
Variable              B        SE B     95% Confdnce Intrvl B       Beta 
HIGH           1.750000     .707107      .264424     3.235576    .295936 
LOW            -.750000     .707107    -2.235576      .735576   -.126830 
MALE           2.250000     .707107      .764424     3.735576    .403570 
MA_LOW         1.250000    1.000000     -.850922     3.350922    .167113 
MAL_HI         3.500000    1.000000     1.399078     5.600922    .467916 
(Constant)     3.000000     .500000     1.949539     4.050461 
 
----------- in ------------ 
Variable           T  Sig T 
HIGH           2.475  .0235 
LOW           -1.061  .3029 
MALE           3.182  .0052 
MA_LOW         1.250  .2273 
MAL_HI         3.500  .0026 
(Constant)     6.000  .0000 
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Table 9 
Descriptive Statistics and Correlations Among Behavioral Problems, SES, Sex, and the SES×Sex 
Interaction 

Variable  Correlations     
 Behave High Low Male Male * 

Low 
Male * 
High 

Behave  ---      
High .602* ---     
Low -.317 -.500* ---    
Male .688* .000 .000 ---   
Male * Low .080 -.316 .632* .447* ---  
Male * High .842* .632* -.316 .447* -.200 --- 
Mean 5.25 .33 .33 .50 .17 .17 
SD 2.85 .48 .48 .51 .38 .38 
Note. Male is a dummy variable (1 = male, 0 = female), as are High (1 = high SES, 0 = otherwise) and 
Low (1 = low SES, 0 = otherwise); n = 24. 
*p<.05. 
 
Table 10 
Regression of Behavioral Problems on Sex and SES 

Variable b se ΔR2 95%CI F t 
Male 2.25 0.71 .05 0.76, 3.74 10.13* 3.18* 
SES   .07  6.58*  
   Low -0.75 0.71  -2.24, 0.74  -1.06 
   High 1.75 0.71  0.26, 3.24  2.48* 
Sex × SES   .07  6.29*  
   Male × High 3.50 1.00  1.40, 5.60  3.50* 
   Male × Low 1.25 1.00  -0.85, 3.35  1.25 
Intercept       
Note. R2 = .90, adj. R2 = .88, F5,18 = 33.70*, MSE = 1.00, n = 24. ΔR2 represents the semi-partial multiple 
correlation or the increment in R2 due to adding the respective variable; Male is a dummy variable (1 = 
male, 0 = female), as are High (1 = high SES, 0 = otherwise) and Low (1 = low SES, 0 = otherwise). 
*p < .05. 
 
Table 5 
Simple Main Effect Comparisons of Behavioral Problems by Sex Across Levels of SES 

Contrast Male vs. Female 
Mean Difference  

Standard Error of 
Difference 

Bonferroni Adjusted 
.95CI 

SES Level    
   Low 3.50* 0.71 1.64, 5.36 
   Middle  2.25* 0.71 0.39, 4.11 
   High 5.75* 0.71 3.89, 7.61 
*p<.05, where p-values are adjusted using the Bonferroni method. 
 
[Note: 
1. Instead of sex pairwise comparisons for each level of SES in Table 5, one could also calculate and 
display SES comparisons separately for males and for females 
2. The Bonferroni critical t used was 2.631 (df = 18, comparisons = 3).] 
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An interactive graphical of these results can be seen here: 
http://tinyurl.com/2vk7l4s 
 
Also here: 
https://spreadsheets.google.com/ccc?key=0ArHM99WFArnmdGpYRzlRQ3FHQ09NWVVqcEdWOWhp
cGc&hl=en&authkey=CMeshLcC 
Means Per Cell Combination 
 Male  Female 
High 10.5 4.75 
Middle 5.25 3 
Low 5.75 2.25 

 
Figure Showing Interaction: Sex Differences Across Levels of SES 

 
 
Figure Showing Same Data and Interaction: SES Differences Across Levels of Sex 
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