Multiple Linear Regression: Squared Semi-partial Correlation $\Delta \mathbf{R}^{\mathbf{2}}$

1. Purpose of Squared Semi-partial (or Part) Correlation $\Delta \mathbf{R}^{2}$

The squared semi-partial correlation, or the squared part correlation, is mathematically equivalent to ΔR^{2} — the change in model R^{2} between full (all relevant predictors included) and reduced models (predictors of interest omitted). It is the increase in model R^{2} from the addition of a variable or set of variables to the regression equation.

The squared semi-partial correlation

- offers a standardized measure of partial effect upon the DV for each predictor,
- it is a measure of effect size (measure for determining relative effect of a predictor), and
- serves for hypothesis testing the combined statistical effect of a set of variables or vectors in regression.

2. Calculating $\Delta \mathbf{R}^{2}$

The squared semi-partial correlation is found comparing the change in model R^{2} between two regression models, the reduced and full model:
$\Delta \mathrm{R}^{2}(\mathrm{X})=R_{f}^{2}-R_{r}^{2}$
where $\mathrm{f}=$ full and $\mathrm{r}=$ reduced and X indicates the predictor or predictors for which one may calculate the squared semi-partial correlation.

Table 1: Example Calculating ΔR^{2} for Variable X_{1}

Model	Equation	R^{2} Values
Full Model	$\mathrm{Y}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{e}$.	$\mathrm{R}_{\mathrm{f}}^{2}=.40$
Reduced Model (X_{1} omitted)	$\mathrm{Y}=\mathrm{b}_{0} \quad+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{e}$.	$\mathrm{R}_{\mathrm{r}}^{2}=.30$
		$\Delta \mathrm{R}^{2}\left(\mathrm{X}_{1}\right)=.4-.3$
		$=.10$

Recall the fictional mathematics scores data in Table 2 below.
SPSS Data File: http://www.bwgriffin.com/gsu/courses/edur8132/notes/fictional_math_scores.sav
Table 2: Fictional Mathematics Scores, Height, Sex, and Other Mathematic Scores

Math Scores	Height	Sex	Other Math	Math Scores	Height	Sex	Other Math
9	11	1	\cdot	3	5	0	.
8	10	1	.	2	4	0	.
9	10	1	10	3	4	0	3
10	10	1	11	4	4	0	2
7	9	1	.	1	3	0	.
8	9	1	12	2	3	0	4
9	9	1	.	3	3	0	3
10	9	1	11	4	3	0	.
11	9	1	.	5	3	0	.
8	8	1	.	2	2	0	5
9	8	1	12	3	2	0	4
10	8	1	13	4	2	0	.
9	7	1	.	3	1	0	.

What is the partial effect of sex for the model of "Other Math" scores? The partial effect, as measured by $\Delta R^{2}(\operatorname{sex})$, can be calculated as follows. The full model contains both sex and height as predictors:

Full Model: Other Math ${ }_{i}=b_{0}+b_{1}$ Height $_{\mathrm{i} 1}+\mathrm{b}_{2} \mathrm{Sex}_{\mathrm{i} 2}+\mathrm{e}_{\mathrm{i}}$
and the reduced model omits sex:
Reduced Model: Other Math ${ }_{i}=b_{0}+b_{1}$ Height $_{\mathrm{i}_{1}}+\ldots+\mathrm{e}_{\mathrm{i}}$

1. What values of R^{2} are obtained in both full and reduced models?
2. What is the value obtained for $\Delta \mathrm{R}^{2}(\operatorname{sex})$?

3 . What is the value obtained for ΔR^{2} (height)?
Note that $\Delta R^{2}(\operatorname{sex})$ represents the increase in model R^{2} that is attributable to the variable sex over and above the contribution of height. It is the partial effect of sex on model R^{2}; it is the unique contribution of sex to the regression model predicting Other Math. Similarly, $\Delta \mathrm{R}^{2}$ (height) is the partial effect of height on model R^{2} taking into account sex-the increment in model R^{2} due to adding height to a model that already contains sex.

The squared semi-partial correlation, $\Delta \mathrm{R}^{2}$, represents predicted variance in Y attributable, uniquely, to a given X or set of Xs.

3. Graphical Illustration $\Delta \mathbf{R}^{2}$

Below in Figure 1 is a Venn Diagram demonstrating semi-partial, or part, correlations.
Figure 1

Note the following:
$\mathrm{Y}=\mathrm{DV}$: The total variance of Y is the sum of $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$
$\mathrm{X} 1=\mathrm{IV}$
$\mathrm{X} 2=\mathrm{IV}$
$a=$ The variance of Y predicted, uniquely, by $X 1: \Delta R^{2}(X 1)=a$
$c=$ The variance of Y predicted, uniquely, by $\mathrm{X} 2: \Delta R^{2}(\mathrm{X} 2)=c$

1. What is b ?
2. What is d ?
3. How could d be calculated in terms of model R^{2} ?

4. Finding $\Delta \mathbf{R}^{\mathbf{2}}$ for House prices in Albuquerque 1993

Recall the selling prices of homes in Albuquerque for 1993:

Price	$=$ Prices in thousands of dollars.
Square Feet	$=$ Size of house in square feet living space.
Age	$=$ Age of house in years.
Features	$=\quad$ Number out of 11 features (dishwasher, refrigerator, microwave, disposer, washer,
Tax	$=$ Annual taxes in dollars

The data can be downloaded here:
Excel: http://www.bwgriffin.com/gsu/courses/edur8131/data/house-prices.xls
SPSS: http://www.bwgriffin.com/gsu/courses/edur8131/data/house-prices.sav
Minitab: http://www.bwgriffin.com/gsu/courses/edur8131/data/house-prices.MTW
Run the following regression model:
Price $=$ square feet + age + number of features

1. What value of of R^{2} is obtained for this full model?
2. What is the value obtained for ΔR^{2} (square feet)?
3. What is the value obtained for $\Delta R^{2}($ age $)$?
4. What is the value obtained for $\Delta \mathrm{R}^{2}$ (features)?

5. $\Delta \mathbf{R}^{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$: Squared Semi-partial for Sets of Predictors

It is possible to calculate ΔR^{2} for sets of predictors to measure the combined contribution of several variables in terms of Y variance predicted. The value of ΔR^{2} for several predictors is calculated as the change in model R^{2} :
$\Delta \mathrm{R}^{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=R_{f}^{2}-R_{r}^{2}$
where $f=$ full and $r=$ reduced and X indicates the predictor or predictors for which one may calculate the squared semi-partial correlation.

Table 1: Example Calculating $\Delta \mathrm{R}^{2}$ for Variable X_{1} and X_{2}

Model	Equation		R^{2} Values
Full Model	$\mathrm{Y}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{b}_{3} \mathrm{X}_{3}+\mathrm{e}$.	$\mathrm{R}_{\mathrm{f}}^{2}=.17$	
Reduced Model ($\mathrm{X}_{1}, \mathrm{X}_{2}$ omitted $)$	$\mathrm{Y}=\mathrm{b}_{0}$	$+\quad+\mathrm{b}_{3} \mathrm{X}_{3}+\mathrm{e}$.	$\mathrm{R}_{\mathrm{r}}^{2}=.05$
			$\Delta \mathrm{R}^{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=.17-.05$
			$=.12$

1. What is the value obtained for $\Delta \mathrm{R}^{2}$ (square feet, age)?
2. What is the value obtained for ΔR^{2} (square feet, features)?
3. What is the value obtained for ΔR^{2} (age, features)?

6. Hypothesis Testing $\Delta \mathbf{R}^{\mathbf{2}}$ for One Predictor

The null hypothesis indicates that the partial effects of a predictor equals zero:
$\mathrm{H}_{0}: \Delta \mathrm{R}^{2}(\mathrm{X})=0.00$
The alternative hypothesis:
$H_{1}: \Delta R^{2}(X) \neq 0.00$
If fail to reject H_{0}, then one concludes the partial effects of X controlling for other predictors does not statistically contribute to model R^{2} (X does not contribute to explained variation in Y), or that X is not associated with Y once other predictors are taken into account.

Note the following equivalence when only one predictor with a single degree of freedom is considered-that is, a variable that consumes only one column of data (a single vector):
$\mathrm{H}_{0}: \Delta \mathrm{R}^{2}(\mathrm{X})=0.00$ is the same as
$\mathrm{H}_{0}: \beta_{\mathrm{x}}=0.00$.
For tests of single degree of freedom predictors (one vector, one column IVs), both t-test and partial F-test are equivalent.

Partial F-test is often used for testing $H_{0}: \Delta R^{2}(X)$
$\mathrm{F}=\frac{\Delta R^{2}(X) /\left(d f_{2 r}-d f_{2 f}\right)}{\left(1-R_{f}^{2}\right) / d f_{2 f}}$
where
$\Delta \mathrm{R}^{2}(\mathrm{X})$ is the partial effect to be tested;
$\mathrm{df}_{2 \mathrm{f}}$ is the error degrees of freedom for the full model $\left(\mathrm{n}-\mathrm{k}_{\mathrm{f}}-1\right)$;
$\mathrm{df}_{2 \mathrm{r}}$ is the error degrees of freedom for the reduced model $\left(\mathrm{n}-\mathrm{k}_{\mathrm{r}}-1\right)$; and
R_{f}^{2} is the full model R^{2} value.
The partial F-ratio is test against critical F value with degrees of freedom equal to
$\mathrm{df}_{1}=\mathrm{df}_{2 \mathrm{r}}-\mathrm{df}_{2 \mathrm{f}}$,
and
$\mathrm{df}_{2}=\mathrm{df}_{2 \mathrm{f}}$.
An example with the Other Math data:
Full Model: Other Math ${ }_{\mathrm{i}}=\mathrm{b}_{0}+\mathrm{b}_{1}$ Height $_{\mathrm{i} 1}+\mathrm{b}_{2} \mathrm{Sex}_{\mathrm{i} 2}+\mathrm{e}_{\mathrm{i}}$
$R_{f}^{2}=.985$
$\mathrm{df}_{2 \mathrm{f}}=9$
Reduced Model: Other Math ${ }_{i}=b_{0}+b_{1}$ Height $_{i_{1}}+\ldots+e_{i}$
$R_{f}^{2}=.785$
$\mathrm{df}_{2 \mathrm{f}}=10$
So the following partial F-ratio is obtained:
$\Delta \mathrm{R}^{2}(\operatorname{sex})=.985-.785=.20$, so
$\mathrm{F}=\frac{\Delta R^{2}(X) /\left(d f_{2 r}-d f_{2 f}\right)}{\left(1-R_{f}^{2}\right) / d f_{2 f}}=\frac{.20 /(10-9)}{(1-.985) / 9}=\frac{.20 /(1)}{(.015) / 9}=\frac{.20}{.001666667}=119.9999 \approx 120$
This calculated, or obtained, F-ratio is compared against a critical F value with the following degrees of freedom:
$\mathrm{df}_{1}\left(\mathrm{df}_{\mathrm{b}}\right)=\mathrm{df}_{2 \mathrm{r}}-\mathrm{df}_{2 \mathrm{f}}=10-9=1$
and
$\mathrm{df}_{2}\left(\mathrm{df}_{\mathrm{w}}\right)=\mathrm{df}_{2 \mathrm{f}}=9$
Using the table of critical F-ratios linked on the course web site, the critical F value for $\alpha=.05$ is
Critical ${ }_{.05} \mathrm{~F}_{1,9}=5.12$
Decision rule:
If $F \geq$ critical F reject H_{0}, otherwise fail to reject H_{0}
Since $\mathrm{F}=120$ is greater than critical $\mathrm{F}=5.12, \mathrm{H}_{0}$ is rejected and we conclude that the partial effect of sex is statistically significant; sex does contribute to variance predicted in other math scores.

What is the partial F-test result for ΔR^{2} (height)?
When only one predictor is examined-variables that occupy only one column of data, or a vector-the following equivalence results for the F-ratio with one degree of freedom ($\mathrm{df}_{1}=1$) to t-ratio:
$\mathrm{F}_{(\mathrm{dfl} 1=1, \mathrm{df} 2=\infty)}=\mathrm{t}^{2}$
For sex the partial F-ratio $=120$, and from the regression results the obtained t-ratio was 11.03:
$120 \approx 11.03^{2}(=121.6609)$
Note discrepancy is due to round error of reported results in SPSS for the R^{2} values for the full and reduced models. SPSS provides only the thousandths place, but the actual R^{2} values for the full and reduced models are:
$R_{f}^{2}=.985222$
$R_{r}^{2}=.785459$
Using these figures, the partial F-ratio would be:
$\Delta \mathrm{R}^{2}(\operatorname{sex})=.985222-.785459=.199763$, so
$\mathrm{F}=\frac{\Delta R^{2}(X) /\left(d f_{2 r}-d f_{2 f}\right)}{\left(1-R_{f}^{2}\right) / d f_{2 f}}=\frac{.199763 /(10-9)}{(1-.985222) / 9}=\frac{.199763 /(1)}{(.014778) / 9}=\frac{.199763}{.001642}=121.658$
The above value is, again, within rounding error of the value reported in SPSS.

7. Partial F test with SPSS

SPSS can be used to calculate ΔR^{2} values and partial F-tests.
a. Linear Regression \rightarrow Statistics \rightarrow check both " R squared change"
b. Linear Regression \rightarrow Add Height to "Independents" Box \rightarrow Next \rightarrow Add Sex to "Independents" Box \rightarrow OK

Using the Albuquerque housing data, what is the partial F-test result for $\Delta \mathrm{R}^{2}($ size $)$?
Using the Albuquerque housing data, what is the partial F-test result for ΔR^{2} (features)?

8. Hypothesis Testing $\Delta \mathbf{R}^{\mathbf{2}}$ for a Set of Predictors

The partial F test can also be calculated for a set of predictors. Using the Albuquerque Housing Data, the following figures are obtained for the set size and features:

Full Model: Price $=\mathrm{b}_{0}+\mathrm{b}_{1}$ Size $+\mathrm{b}_{2}$ Features $+\mathrm{b}_{3}$ Age $+\mathrm{e}_{\mathrm{i}}$
$R_{f}^{2}=.80$
$\mathrm{df}_{2 \mathrm{f}}=62$
Reduced Model: Price $=\mathrm{b}_{0}+\mathrm{b}_{3}$ Age $+\mathrm{e}_{\mathrm{i}}$
$R_{f}^{2}=.028$
$\mathrm{df}_{2 \mathrm{f}}=64$
So the following partial F-ratio is obtained:
$\Delta \mathrm{R}^{2}($ size, features $)=.80-.028=.772$, so
$\mathrm{F}=\frac{\Delta R^{2}(X) /\left(d f_{2 r}-d f_{2 f}\right)}{\left(1-R_{f}^{2}\right) / d f_{2 f}}=\frac{.772 /(64-62)}{(1-.8) / 62}=\frac{.772 /(2)}{(.20) / 62}=\frac{.386}{.0032258}=119.66$
This calculated, or obtained, F-ratio is compared against a critical F value with the following degrees of freedom:
$\mathrm{df}_{1}\left(\mathrm{df}_{\mathrm{b}}\right)=\mathrm{df}_{2 \mathrm{r}}-\mathrm{df}_{2 \mathrm{f}}=64-62=2$
and
$\mathrm{df}_{2}\left(\mathrm{df}_{\mathrm{w}}\right)=\mathrm{df}_{2 \mathrm{f}}=64$
Using the table of critical F-ratios linked on the course web site, the critical F value for $\alpha=.05$ (using tabled $\mathrm{df}_{2}=60$) is

Critical ${ }_{.05} \mathrm{~F}_{2,64(60)}=3.15$

Since $\mathrm{F}=119.66$ is greater than critical $\mathrm{F}=3.15, \mathrm{H}_{0}$ is rejected and we conclude that the partial effect for combined size and features is statistically significant; together, these two predictors contribute to variance predicted in selling price of houses.

Housing Sales Data

1. What is the partial F-ratio for $\Delta \mathrm{R}^{2}$ (square feet, age)?
2. What is the partial F-ratio for ΔR^{2} (square feet, features)?
3. What is the partial F-ratio for ΔR^{2} (age, features)?

9. Ice Cream Sales Data

Ice Cream Sales Data:
Excel: http://www.bwgriffin.com/gsu/courses/edur8131/data/ice-cream.xls
SPSS: http://www.bwgriffin.com/gsu/courses/edur8131/data/ice-cream.sav

Sales (consumption)	$=$ Measured in pints per capita.
Price	$=$ Price of ice cream in dollars.
Income	$=$ Weekly family income in dollars.
Temperature	$=$ Mean temperature in degrees Fahrenheit.

Assume the following full model:
Sales' $=\mathrm{b}_{0}+\mathrm{b}_{1}$ Price $+\mathrm{b}_{2}$ Income $+\mathrm{b}_{3}$ Temperature

1. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (income)?
2. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (temperature)?
3. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (price)?
4. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (temperature, income)?
5. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (temperature, price)?

Answers

	F-ratio	$\Delta \mathrm{R}^{2}$
1. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (income)?	7.97	. 086
2. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (temperature)?	60.25	. 651
3. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (price)?	1.57	. 017
4. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (temperature, income)?	30.14	. 652
5. What is the partial F-ratio and $\Delta \mathrm{R}^{2}$ (temperature, price)?	33.15	. 717

