Multiple Linear Regression: Squared Semi-partial Correlation ΔR^2

1. Purpose of Squared Semi-partial (or Part) Correlation ΔR^2

The squared semi-partial correlation, or the squared part correlation, is mathematically equivalent to ΔR^2 — the change in model R^2 between full (all relevant predictors included) and reduced models (predictors of interest omitted). It is the increase in model R^2 from the addition of a variable or set of variables to the regression equation.

The squared semi-partial correlation

- offers a standardized measure of partial effect upon the DV for each predictor,
- it is a measure of effect size (measure for determining relative effect of a predictor), and
- serves for hypothesis testing the combined statistical effect of a set of variables or vectors in regression.

2. Calculating $\Delta \mathbf{R}^2$

The squared semi-partial correlation is found comparing the change in model R^2 between two regression models, the reduced and full model:

 $\Delta R^2(X) = R_f^2 - R_r^2$

where f = full and r = reduced and X indicates the predictor or predictors for which one may calculate the squared semi-partial correlation.

Table 1: Example Calculating ΔR^2 for Variable X₁

1 0	1	
Model	Equation	R^2 Values
Full Model	$Y = b_0 + b_1 X_1 + b_2 X_2 + e.$	$R_{f}^{2} = .40$
Reduced Model (X ₁ omitted)	$\mathbf{Y} = \mathbf{b}_0 \qquad \qquad + \mathbf{b}_2 \mathbf{X}_2 + \mathbf{e}.$	$R_{r}^{2} = .30$
		$\Delta R^2(X_1) = .43$
		= .10

Recall the fictional mathematics scores data in Table 2 below.

SPSS Data File: <u>http://www.bwgriffin.com/gsu/courses/edur8132/notes/fictional_math_scores.sav</u>

Math Scores	Height	Sex	Other Math	Math Scores	Height	Sex	Other Math
9	11	1		3	5	0	
8	10	1		2	4	0	
9	10	1	10	3	4	0	3
10	10	1	11	4	4	0	2
7	9	1		1	3	0	
8	9	1	12	2	3	0	4
9	9	1		3	3	0	3
10	9	1	11	4	3	0	
11	9	1		5	3	0	
8	8	1		2	2	0	5
9	8	1	12	3	2	0	4
10	8	1	13	4	2	0	
9	7	1		3	1	0	

Table 2: Fictional Mathematics Scores, Height, Sex, and Other Mathematic Scores

What is the partial effect of sex for the model of "Other Math" scores? The partial effect, as measured by $\Delta R^2(sex)$, can be calculated as follows. The full model contains both sex and height as predictors:

Full Model: Other $Math_i = b_0 + b_1 Height_{i1} + b_2 Sex_{i2} + e_i$

and the reduced model omits sex:

Reduced Model: Other $Math_i = b_0 + b_1Height_{i1} + ... + e_i$

- 1. What values of R^2 are obtained in both full and reduced models?
- 2. What is the value obtained for $\Delta R^2(sex)$?
- 3. What is the value obtained for ΔR^2 (height)?

Note that $\Delta R^2(sex)$ represents the increase in model R^2 that is attributable to the variable sex over and above the contribution of height. It is the partial effect of sex on model R^2 ; it is the unique contribution of sex to the regression model predicting Other Math. Similarly, ΔR^2 (height) is the partial effect of height on model R^2 taking into account sex—the increment in model R^2 due to adding height to a model that already contains sex.

The squared semi-partial correlation, ΔR^2 , represents predicted variance in Y attributable, uniquely, to a given X or set of Xs.

3. Graphical Illustration $\Delta \mathbf{R}^2$

Below in Figure 1 is a Venn Diagram demonstrating semi-partial, or part, correlations.

Figure 1

Note the following:

- Y = DV: The total variance of Y is the sum of a + b + c + d
- X1 = IVX2 = IV
- X2 = IV
- a = The variance of Y predicted, uniquely, by X1 : $\Delta R^2(X1) = a$
- c = The variance of Y predicted, uniquely, by X2 : $\Delta R^2(X2) = c$
- 1. What is b?
- 2. What is d?
- 3. How could d be calculated in terms of model R^2 ?

4. Finding $\Delta \mathbf{R}^2$ for House prices in Albuquerque 1993

Recall the selling prices of homes in Albuquerque for 1993:

Price	=	Prices in thousands of dollars.
Square Feet	=	Size of house in square feet living space.
Age	=	Age of house in years.
Features	=	Number out of 11 features (dishwasher, refrigerator, microwave, disposer, washer,
		intercom, skylight(s), compactor, dryer, handicap fit, cable TV access)
Tax	=	Annual taxes in dollars

The data can be downloaded here:

Excel: <u>http://www.bwgriffin.com/gsu/courses/edur8131/data/house-prices.xls</u> SPSS: <u>http://www.bwgriffin.com/gsu/courses/edur8131/data/house-prices.sav</u> Minitab: <u>http://www.bwgriffin.com/gsu/courses/edur8131/data/house-prices.MTW</u>

Run the following regression model:

Price = square feet + age + number of features

1. What value of of R^2 is obtained for this full model?

- 2. What is the value obtained for ΔR^2 (square feet)?
- 3. What is the value obtained for $\Delta R^2(age)$?
- 4. What is the value obtained for ΔR^2 (features)?

5. $\Delta R^2(X_1, X_2)$: Squared Semi-partial for Sets of Predictors

It is possible to calculate ΔR^2 for sets of predictors to measure the combined contribution of several variables in terms of Y variance predicted. The value of ΔR^2 for several predictors is calculated as the change in model R^2 :

 $\Delta R^{2}(X_{1}, X_{2}) = R_{f}^{2} - R_{r}^{2}$

where f = full and r = reduced and X indicates the predictor or predictors for which one may calculate the squared semi-partial correlation.

Table 1: Example Calculating ΔR	for Variable X_1 and X_2	
Model	Equation	R^2 Values
Full Model	$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + e.$	$R_{f}^{2} = .17$
Reduced Model $(X_1, X_2 \text{ omitted})$	$Y = b_0 + b_3 X_3 + e_1$	$R_{r}^{2} = .05$
		$\Delta R^2(X_1, X_2) = .1705$
		= .12

Table 1: Example Calculating ΔR^2 for Variable X₁ and X₂

1. What is the value obtained for ΔR^2 (square feet, age)?

2. What is the value obtained for ΔR^2 (square feet, features)?

3. What is the value obtained for ΔR^2 (age, features)?

6. Hypothesis Testing $\Delta \mathbf{R}^2$ for One Predictor

The null hypothesis indicates that the partial effects of a predictor equals zero:

 $H_0: \Delta R^2(X) = 0.00$

The alternative hypothesis:

H₁: $\Delta R^2(X) \neq 0.00$

If fail to reject H_0 , then one concludes the partial effects of X controlling for other predictors does not statistically contribute to model R^2 (X does not contribute to explained variation in Y), or that X is not associated with Y once other predictors are taken into account.

Note the following equivalence when only one predictor with a single degree of freedom is considered—that is, a variable that consumes only one column of data (a single vector):

 $H_0: \Delta R^2(X) = 0.00$ is the same as

 $H_0:\beta_x = 0.00.$

For tests of single degree of freedom predictors (one vector, one column IVs), both t-test and partial F-test are equivalent.

Partial F-test is often used for testing H_0 : $\Delta R^2(X)$

$$F = \frac{\Delta R^2(X) / (df_{2r} - df_{2f})}{(1 - R_f^2) / df_{2f}}$$

where

 $\Delta R^2(X)$ is the partial effect to be tested; df_{2f} is the error degrees of freedom for the *full* model (n - k_f - 1); df_{2r} is the error degrees of freedom for the *reduced* model (n - k_r - 1); and R_f^2 is the *full* model R² value.

The partial F-ratio is test against critical F value with degrees of freedom equal to

 $df_1 = df_{2r} - df_{2f},$

and

 $df_2 = df_{2f}.$

An example with the Other Math data:

Full Model: Other Math_i = $b_0 + b_1$ Height_{i1}+ b_2 Sex_{i2} + e_i

$$R_f^2 = .985$$

df_{2f} = 9

Reduced Model: Other Math_i = $b_0 + b_1$ Height_{i1}+ ... + e_i

$$R_f^2 = .785$$

df_{2f} = 10

So the following partial F-ratio is obtained:

$$\Delta R^2(sex) = .985 - .785 = .20$$
, so

$$F = \frac{\Delta R^2(X)/(df_{2r} - df_{2f})}{(1 - R_f^2)/df_{2f}} = \frac{.20/(10 - 9)}{(1 - .985)/9} = \frac{.20/(1)}{(.015)/9} = \frac{.20}{.001666667} = 119.9999 \approx 120$$

This calculated, or obtained, F-ratio is compared against a critical F value with the following degrees of freedom:

$$df_1 (df_b) = df_{2r} - df_{2f} = 10 - 9 = 1$$

and

 $df_2 (df_w) = df_{2f} = 9$

Using the table of critical F-ratios linked on the course web site, the critical F value for α =.05 is

Critical $_{.05}F_{1,9} = 5.12$

Decision rule:

If $F \ge$ critical F reject H_0 , otherwise fail to reject H_0

Since F = 120 is greater than critical F = 5.12, H_0 is rejected and we conclude that the partial effect of sex is statistically significant; sex does contribute to variance predicted in other math scores.

What is the partial F-test result for ΔR^2 (height)?

When only one predictor is examined—variables that occupy only one column of data, or a vector—the following equivalence results for the F-ratio with one degree of freedom ($df_1 = 1$) to t-ratio:

 $F_{(df1=1, df2=\infty)} = t^2$

For sex the partial F-ratio = 120, and from the regression results the obtained t-ratio was 11.03:

 $120 \approx 11.03^2 (= 121.6609)$

Note discrepancy is due to round error of reported results in SPSS for the R^2 values for the full and reduced models. SPSS provides only the thousandths place, but the actual R^2 values for the full and reduced models are:

 $R_f^2 = .985222$ $R_r^2 = .785459$

Using these figures, the partial F-ratio would be:

 $\Delta R^2(sex) = .985222 - .785459 = .199763$, so

$$F = \frac{\Delta R^2(X)/(df_{2r} - df_{2f})}{(1 - R_f^2)/df_{2f}} = \frac{.199763/(10 - 9)}{(1 - .985222)/9} = \frac{.199763/(1)}{(.014778)/9} = \frac{.199763}{.001642} = 121.658$$

The above value is, again, within rounding error of the value reported in SPSS.

7. Partial F test with SPSS

SPSS can be used to calculate ΔR^2 values and partial F-tests.

a. Linear Regression \rightarrow Statistics \rightarrow check both "R squared change"

b. Linear Regression \rightarrow Add Height to "Independents" Box \rightarrow Next \rightarrow Add Sex to "Independents" Box \rightarrow OK

Using the Albuquerque housing data, what is the partial F-test result for ΔR^2 (size)? Using the Albuquerque housing data, what is the partial F-test result for ΔR^2 (features)?

8. Hypothesis Testing ΔR^2 for a Set of Predictors

The partial F test can also be calculated for a set of predictors. Using the Albuquerque Housing Data, the following figures are obtained for the set size and features:

Full Model: Price = $b_0 + b_1$ Size+ b_2 Features + b_3 Age + e_i

$$R_f^2 = .80$$
$$df_{2f} = 62$$

Reduced Model: Price = $b_0 + b_3Age + e_i$

$$R_f^2 = .028$$
$$df_{2f} = 64$$

So the following partial F-ratio is obtained:

 ΔR^2 (size, features) = .80 - .028 = .772, so

$$F = \frac{\Delta R^2(X)/(df_{2r} - df_{2f})}{(1 - R_f^2)/df_{2f}} = \frac{.772/(64 - 62)}{(1 - .8)/62} = \frac{.772/(2)}{(.20)/62} = \frac{.386}{.0032258} = 119.66$$

This calculated, or obtained, F-ratio is compared against a critical F value with the following degrees of freedom:

$$df_1 (df_b) = df_{2r} - df_{2f} = 64 - 62 = 2$$

and

 $df_2 (df_w) = df_{2f} = 64$

Using the table of critical F-ratios linked on the course web site, the critical F value for α =.05 (using tabled df₂ = 60) is

Critical $_{.05}F_{2,64(60)} = 3.15$

Since F = 119.66 is greater than critical F = 3.15, H_0 is rejected and we conclude that the partial effect for combined size and features is statistically significant; together, these two predictors contribute to variance predicted in selling price of houses.

Housing Sales Data

- 1. What is the partial F-ratio for ΔR^2 (square feet, age)?
- 2. What is the partial F-ratio for ΔR^2 (square feet, features)?
- 3. What is the partial F-ratio for ΔR^2 (age, features)?

9. Ice Cream Sales Data

Ice Cream Sales Data:

Excel: <u>http://www.bwgriffin.com/gsu/courses/edur8131/data/ice-cream.xls</u> SPSS: <u>http://www.bwgriffin.com/gsu/courses/edur8131/data/ice-cream.sav</u>

Sales (consumption)	=	Measured in pints per capita.
Price	=	Price of ice cream in dollars.
Income	=	Weekly family income in dollars.
Temperature	=	Mean temperature in degrees Fahrenheit.

Assume the following full model:

Sales' = $b_0 + b_1$ Price + b_2 Income + b_3 Temperature

- 1. What is the partial F-ratio and ΔR^2 (income)?
- 2. What is the partial F-ratio and ΔR^2 (temperature)?
- 3. What is the partial F-ratio and ΔR^2 (price)?
- 4. What is the partial F-ratio and ΔR^2 (temperature, income)?
- 5. What is the partial F-ratio and ΔR^2 (temperature, price)?

Answers

	F-ratio	ΔR^2
1. What is the partial F-ratio and ΔR^2 (income)?	7.97	.086
2. What is the partial F-ratio and ΔR^2 (temperature)?	60.25	.651
3. What is the partial F-ratio and ΔR^2 (price)?	1.57	.017
4. What is the partial F-ratio and ΔR^2 (temperature, income)?	30.14	.652
5. What is the partial F-ratio and ΔR^2 (temperature, price)?	33.15	.717