
Regression: Model Fit Measures 
 
 
1. Coefficient of Multiple Correlation R and Coefficient of Determination R2  
 
As previously noted one measure of model fit—how well the regression model is able to reproduce the observed 
scores on the dependent variable Y—is the simple Pearson’s correlation between observed Y and predicted Y'. 
 
R = Pearson’s correlation, r, between Y and Y' 
 
The closer R is to 1.00 the better the regression model is able to reproduce Y, the closer R is to 0.00, the worse the 
performance of the model in reproducing Y. While R may be negative, this is not expected or likely; one anticipates 
R to be positive since the regression model is designed to predict Y as well as is possible given the data.  
 
The coefficient of determination, R2, is simply R squared: 
 
R2 = R × R = proportion of variance in Y predicted (or explained) by regression model 
 
The coefficient of determination may be interpreted as the proportional reduction in error resulting from use of the 
regression model to predict Y. Another interpretation of the coefficient of determination is explained variance—the 
proportion of variance in Y explained, or predicted, by the regression model. The complement of this, 1−R2, is the 
amount of variance in Y that is not explained or predicted by the regression model.  
 
1−R2 = proportion of variance in Y not explained by regression model 
 
Recall the student ratings data: 
 
Table 1: Student Ratings and Course Grades Data  

Course  Quarter  Year  Student Ratings  
(mean ratings for course) 

Percent A's  

EDR852  FALL  1994  3.00  46.00  
EDR761  FALL  1994  4.40  47.00  
EDR761  FALL  1993  4.40  53.00  
EDR751  SUMM  1994  4.50  62.00  
EDR751  SUMM  1994  4.90  64.00  
EDR761  SPRI  1994  4.40  50.00  
EDR751  SPRI  1994  3.70  33.00  
EDR751  WINT  1994  3.30  25.00  
EDR751  WINT  1994  4.40  53.00  
EDR751  FALL  1993  4.80  50.00  
EDR751  SUMM  1993  4.80  54.00  
EDR751  SUMM  1993  3.80  60.00  
EDR751  SPRI  1993  4.60  54.00  
EDR761  SPRI  1993  4.10  37.00  
EDR751  WINT  1993  4.20  53.00  
EDR751  FALL  1992  3.50  41.00  
EDR751  FALL  1992  3.80  47.00  

 
SPSS Data File: http://www.bwgriffin.com/gsu/courses/edur8132/notes/student_ratings.sav  
 
 

http://www.bwgriffin.com/gsu/courses/edur8132/notes/student_ratings.sav


1. What is the coefficient of multiple correlation value for the student ratings data; that is, what is the correlation 
between observed ratings (Y) and predicted ratings (Y')? 
2. What is the coefficient of determination value? 
 
2. Residuals and Model Fit: SEE and MSE 
 
Recall that a residual, or error, is the difference between observed Y and predicted Y': 
 
e = Y - Y' 
 
One way to measure model fit is to examine variation in residuals.  
 
From basic statistics note that variance in raw data may be calculated for the population as 
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and variance for sample data may be calculated as 
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The difference between these formula is the degrees of freedom. In the population case the count of all observations 
is use, N, but in the sample formula degrees of freedom is n − 1 is used (to provide an unbiased estimate of σ2). 
 
The variance for residuals may also be calculated in the same manner taking into account regression model degrees 
of freedom: 
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The above produces a variance that as many names:  
 
variance error of residuals, or 
variance error of estimate, or 
mean squared error (MSE)   
 
and is denoted as or MSE.  2σ̂
 
The square root of MSE, MSE , is conceptually the standard deviation of residuals, but since these data are 
residuals, or errors, MSE is known as the standard error of residuals or standard error of estimate and is 
symbolized as   
 
σ̂ = MSE = SEE (standard error of estimate) 
  
Note that as SEE, and MSE, become smaller, the fit of the model is better since the residuals are smaller.  
 
 
 
 



3. Adjusted R2—Incorporating MSE into Standardized Model Fit 
 
Both MSE and SEE are scale dependent—the larger the raw scores, the larger will be MSE and SEE. As a result, 
use of MSE and SEE as measures of model fit make difficult model fit comparisons across different measures of Y. 
 
One way to incorporate MSE in a standardized solution for model fit is to examine the proportional reduction in 
error from Y to Y'. Consider the following: 
 
(a) s2 = variance of Y before prediction explains variation in Y, and 
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so MSE is the amount of variance in Y that remains after regression. MSE is the amount of unexplained or 
unpredicted variance in Y; the amount of variation in Y that the regression model does not predict.  
 
The ratio of MSE to s2 can be used to produce a measure of proportional reduction in error: 
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1. Calculate and show s2 for Y and MSE for e for the student ratings data 
2. Show calculation of adj. R2 using the above formula 
 
 
 
  


