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Statistical Control and Mean Adjustment 

 

1. Control 

• Control is the process of eliminating threats to inference about which/how various independent variables (IV) 

contribute to variation on the dependent variable (DV). Control is about holding constant categories of variables.  

• Confounding variables are often the threats that must be controlled. Confounders are variables that are related 

to both the model IVs and DVs but cause bias in regression and ANOVA if not included in the model or not 

controlled by design.  

• Example: Research question – how does reading efficacy relate to reading achievement? Possible confounder: 

Sex of student. Control: Examine relation of reading efficacy and reading achievement separately by sex, or for 

only one sex. 

• Control is built into experimental designs to provide internal validity so causal mechanisms leading to variation 

on DV can be associated with levels of IVs. This control by design helps to eliminate the effects of confounding 

variables.  

• With experimental studies one attempts to obtain using various design methods such as  

o randomization of experimental units (e.g., people, plants, etc.),  

o including model covariates (e.g., variables that relate to or influence the DV),  

o including model factors or blocking variables (e.g. categorical variables that also influence the DV),   

o and holding constant levels of an IV to eliminate or manage the effects of that variable on the DV. 

 

Examples of Control by Design 

 

(a) Fertilizer for tomato yield 

• IV: Four categories of fertilizer  

o Fish emulsion – nitrogen and other elements, applied at soil level periodically 

o Chicken manure - aged, added to soil during plantings, and again to soil periodically 

o Both  

o None 

• DV: Yield, in pounds, of tomatoes  

• Other experimentally designed controls of possible confounding variables:  

o 2 tomato plants per large pot,  

o same soil used,  

o same location within in a greenhouse to limit the effects of weather,  

o same amount of water applied at the same time daily,  

o and same amount of insecticide and fungicides applied to each pot. 

 

(b) Classroom mathematics with background music 

• IV: Three categories of music condition 

o Calming: Giazotto’s Adagio: https://archive.org/details/albinoni-adagio-in-g-minor-12-sonatas-op.-6-c.rc.-

claudio-scimone-i-solisti-veniti-piero-toso  

o Disruptive: John Contrane’s The Father and the Son and the Holy Ghost: 

https://archive.org/details/cd_meditations_john-coltrane/90-0308/  

o None 

• DV: Student performance on an algebra test  

• Other experimentally designed controls of possible confounding variables:  

https://archive.org/details/albinoni-adagio-in-g-minor-12-sonatas-op.-6-c.rc.-claudio-scimone-i-solisti-veniti-piero-toso
https://archive.org/details/albinoni-adagio-in-g-minor-12-sonatas-op.-6-c.rc.-claudio-scimone-i-solisti-veniti-piero-toso
https://archive.org/details/cd_meditations_john-coltrane/90-0308/
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o Six teachers involved, each teaches three sections of algebra, and each will teach one section with each 

background music playing (e.g., teacher A will each one section with calming, one with disruptive, and 

the third section with no music) 

o Order of conditions will vary by teacher to control time of day effects (e.g. teacher A will teach Calming, 

Disruptive, and None; teacher B will teach Disruptive, None, and Calming; teacher C will teach None, 

Calming, then Disruptive; etc.) 

o Teachers will use a common script each day when delivering the mathematics presentation 

o Length of each lesson daily will be one hour 

o Music will be played during the one-hour lesson and will be played on a common device with a common 

low volume (just above the threshold to hear in the background)  

 

2. Statistical Control  

• A means to partial, or hold constant, the effects of confounding variables (i.e., those that confuse interpretation 

of IV effects on the DV because the confounding variable correlates to both the IV and DV). 

• The logic of statistical control is like control in experimental studies but done statistically. With correlational, or 

non-experimental data, statistical control does not offer causal interpretations like offered with data from 

experimental designs. 

• Statistical control allows one to compare the IV effects upon the DV by holding constant the effects of the 

confounding variable. In essence, it is like examining the relation between the IV and DV for each level of the 

confounding variable.  

 

Example of Statistical Control (Regression with two categorical variables) 

 

Example data files so those interested can replicate the analyses: 

SPSS 8g-Statistical-Control-and-Adjustment-Salary-Data.sav  

JASP 8g-Statistical-Control-and-Adjustment-Salary-Data.jasp 

 

Salary by Sex (controlling for Rank) – Fictional Data 

• Is there a difference in faculty salary by sex? 

• Salary reported in thousands of dollars 

• Salary means 

o Females  = $83.33 

o Males   = $66.67 

 

 
 

• Regression results shows males earn $16.66 less than females (i.e., 66.67 – 83.33 = -16.66). 

 

https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-Salary-Data.sav
https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-Salary-Data.jasp
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• Faculty rank (i.e., assistance, associate, professor) is a known factor in salary variation so it must be controlled to 

obtain a more realistic assessment of salary differences by sex. 

• Below are salaries by rank and sex. 

 

 
 

• To statistically control for rank, add it to the regression of salary on sex. Results are provided below and now 

show that once rank is controlled, there is no salary difference between sexes as demonstrated in the descriptive 

table above. Thus, regression was able to offer control of rank, a potentially confounding variable, and clarify the 

salary by sex relation.  

 

 
 

If salary is the same between the sexes for each rank, why do females have an overall higher mean salary when rank is 

ignored? 
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3. Statistical Adjustment 

• When more than one IV is present in a regression model, the slope estimates are known as partial coefficients or 

partial slopes and represent the expected change in the DV for a one-unit change in the IV controlling for, or 

holding constant, the effects of other IVs in the regression equation.  

• The predicted means from a regression equation take into account the partial effects of each IV, and these 

predicted means are known as adjusted means or marginal means.  

• As previously noted, regression and ANOVA models are mathematically the same and both are part of the 

general linear model. Quantitative IVs in the ANOVA model are called covariates and the name for such models is 

ANCOVA (analysis of covariance). Like regression, group comparisons in ANCOVA are performed on marginal 

means (adjusted means) in which the DV means are adjusted for the contributions of each IV in the model.  

 

Example of Statistical Adjustment (Regression with one categorical and one quantitative variable) 

 

Example data files so those interested can replicate the analyses: 

SPSS 8g-Statistical-Control-and-Adjustment-Pretest-Posttest-Data.sav  

JASP 8g-Statistical-Control-and-Adjustment-Pretest-Posttest-Data.sav  

 

The screenshot below shows fictional data used to illustrate statistical adjustment in regression and ANCOVA.  

• Two group: Experimental and Control 

• DV: Posttest scores 

• Posttest means by group 

o Experimental m = 89.50 

o Control  m = 83.50 

o Mean difference = 89.50 – 83.50 = 6.00 

• A pretest is common for experimental studies because it provides a way to check for group equivalence, at least 

on the variable of interest, and provides a way to reduce error variance in the DV for regression and ANCOVA 

models which leads to additional precision for estimates and power for tests.  

• To better illustrate adjustments, three pretest scores are provided in the data. 

o Pretest equal for both groups 

▪ Experimental m = 32.50 

▪ Control  m = 32.50 

o Pretest control group lower: pretest is 5 points lower for the control group (5 points subtracted from 

initial pretest scores) 

▪ Experimental m = 32.50 

▪ Control  m = 27.50 

o Pretest control group higher: pretest is 5 points higher for the control group (5 points added to initial 

pretest scores) 

▪ Experimental m = 32.50 

▪ Control  m = 37.50 

• Data for the example are shown below. 

 

https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-Pretest-Posttest-Data.sav
https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-Pretest-Posttest-Data.sav
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• In each scenario pretest scores correlate positively with posttest scores (the usual situation in experimental 

research) 

• Descriptive statistics for each variable by group are shown below 

 

 
 

Pretest Means Equal 

 If there are no differences in the pretest means for both groups, are any adjustments needed to account for pre-

existing group differences? Use regression to calculate the adjusted mean for posttest scores.  

 

Table A: No difference in pretest scores 

Group Pretest M Observed 
Posttest M 

Adjusted 
Posttest M 

Experimental 32.50 89.50 ? 
Control 32.50 83.50 ? 

Mean Difference = 0.00 6.00 ? 
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Prediction equation 

Posttest’ = 60.10 + 6.00 (Group) + 0.72 (pretest) 

 

To obtain adjusted means for both groups, set the pretest score at the overall mean which is 32.50 and plug that value 

into the regression equation. Hence, the regression equation holds constant pretest scores at 32.50 and provides a 

prediction of the group means if both groups had the same mean pretest score. 

 

Control group adjusted mean: 

Posttest’ = 60.10 + 6.00 (Group) + 0.72 (pretest) 

Posttest’ = 60.10 + 6.00 (0)          + 0.72 (32.50) 

Posttest’ = 60.10                            + 23.4 

Posttest’ = 83.50 

 

Experimental group adjusted mean: 

Posttest’ = 60.10 + 6.00 (Group) + 0.72 (pretest) 

Posttest’ = 60.10 + 6.00 (1)          + 0.72 (32.50) 

Posttest’ = 60.10 + 6.00                + 23.4 

Posttest’ = 89.50 

 

Thus, the predicted means are the same as the observed means because there is no adjustment since both groups had 

the same mean on the covariate (pretest scores).  

 

Table A: No difference in pretest scores 

Group Pretest M Observed 
Posttest M 

Adjusted 
Posttest M 

Experimental 32.50 89.50 89.50 
Control 32.50 83.50 83.50 

Mean Difference = 0.00 6.00 6.00 

 

Pretest Mean for Control Group Lower 

 If the control group starts with a lower pretest mean score, are any adjustments needed to account for pre-

existing group differences? Use regression to calculate the adjusted mean for posttest scores. 

 

Table B: Control group starts study with lower pretest scores 

Group Pretest M Observed 
Posttest M 

Adjusted 
Posttest M 

Experimental 32.50 89.50 ? 
Control 27.50 83.50 ? 

Mean Difference = 0.00 6.00 ? 
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Note that the control group starts the experiment with less knowledge and therefore a lower pretest score. This could 

partially explain why their posttest scores were lower. Therefore, pretest differences between the groups must be taken 

into account. 

 

 
 

Prediction equation 

Posttest’ = 63.70 + 2.40 (Group) + 0.72 (pretest) 

 

To obtain adjusted means for both groups, set the pretest score at the overall mean which is 30.00 and plug that value 

into the regression equation. Hence, the regression equation holds constant the pretest score at 30.00 and provides a 

prediction of the group means if both groups had the same mean pretest score. 

 

Control group adjusted mean: 

Posttest’ = 63.70 + 2.40 (Group) + 0.72 (pretest) 

Posttest’ = 63.70 + 2.40 (0)          + 0.72 (30.00) 

Posttest’ = 63.70                            + 21.6 

Posttest’ = 85.30 

 

Experimental group adjusted mean: 

Posttest’ = 63.70 + 2.40 (Group) + 0.72 (pretest) 

Posttest’ = 63.70 + 2.40 (1)          + 0.72 (30.00) 

Posttest’ = 63.70 + 2.40                + 21.6 

Posttest’ = 87.70 

 

The predicted means are now adjusted with the group starting with a lower pretest score adjusted upward and the group 

with the higher pretest score adjusted downward. Thus, regression has compensated the group means for their relative 

starting position on the covariate of pretest scores.   

 

Table B: Control group starts study with lower pretest scores 

Group Pretest M Observed 
Posttest M 

Adjusted 
Posttest M 

Experimental 32.50 89.50 87.70 
Control 27.50 83.50 85.30 

Mean Difference = 0.00 6.00 2.40 

 

Pretest Mean for Control Group Higher 

 If the control group starts with a higher pretest mean score, are any adjustments needed to account for pre-

existing group differences? Use regression to calculate the adjusted mean for posttest scores. 
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Table C: Control group starts study with higher pretest scores 

Group Pretest M Observed 
Posttest M 

Adjusted 
Posttest M 

Experimental 32.50 89.50 ? 
Control 37.50 83.50 ? 

Mean Difference = 0.00 6.00 ? 

 

 
 

Prediction equation 

Posttest’ = 56.50 + 9.60 (Group) + 0.72 (pretest) 

 

To obtain adjusted means for both groups, set the pretest score at the overall mean which is 35.00 and plug that value 

into the regression equation. Hence, the regression equation holds constant the pretest score at 35.00 and provides a 

prediction of the group means if both groups had the same mean pretest score. 

 

Control group adjusted mean: 

Posttest’ = 56.50 + 9.60 (Group) + 0.72 (pretest) 

Posttest’ = 56.50 + 9.60 (0)          + 0.72 (35.00) 

Posttest’ = 56.50                            + 25.2 

Posttest’ = 81.7 

 

Experimental group adjusted mean: 

Posttest’ = 56.50 + 9.60 (Group) + 0.72 (pretest) 

Posttest’ = 56.50 + 9.60 (1)          + 0.72 (35.00) 

Posttest’ = 56.50 + 9.60                + 25.2 

Posttest’ = 91.30 

 

The predicted means are now adjusted with the group starting with a lower pretest score adjusted upward and the group 

with the higher pretest score adjusted downward. Thus, regression has compensated the group means for their relative 

starting position on the covariate of pretest scores.   

 

Table C: Control group starts study with higher pretest scores 

Group Pretest M Observed 
Posttest M 

Adjusted 
Posttest M 

Experimental 32.50 89.50 91.30 
Control 37.50 83.50 81.70 

Mean Difference = 0.00 6.00 9.60 

 

If these data were analyzed with the ANCOVA command in SPSS or JASP, the same results would be obtained. For 

example, below is JASP output from ANCOVA showing marginal means (adjusted means) using the pretest scores +5 for 
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the control group (i.e., the results shown in Table C above). Note the calculated adjusted means above match the 

marginal means reported by JASP. 

 

 
 

4. Validity of Regression and Model Specification  

• Gelman and Hill (2006, p 45) explain that validity of regression means that the 

o data analyzed must link to the research questions driving the study; 

o IV and DV measures should demonstrate score validity (i.e., scores represent the construct); 

o model should include related IVs and exclude unrelated IVs; and 

o the regression model should use data from a representative sample of the target population.  

• Pedhazur (1997) notes that model specification refers to proper inclusion of relevant predictors, and ensuring 

the model is additive (e.g., interaction terms are addressed) and linear (e.g., non-linear components are 

addressed).  

• The focus here is on inclusion of relevant predictors. Pedhazur explains that failure to include relevant predictors 

can lead to bias parameter estimates, i.e., regression coefficients can be wrong and misleading.  

 

Example of Model Specification: Excluding a Relevant Predictor (Regression with multiple quantitative variables) 

 

Example data files so those interested can replicate the analyses: 

SPSS 8g-Statistical-Control-and-Adjustment-SAT-Data.sav  

JASP 8g-Statistical-Control-and-Adjustment-SAT-Data.jasp  

 

• Data: State level variables (n = 50) collected in 1998  

o DV: Mean Scholastic Aptitude Test (SAT) combined score for mathematics and verbal per state 

o IV: Average (mean) ratio of students to teachers (i.e., a proxy for class size) per state 

o IV: Mean teacher salary in thousands of dollars per state  

• Predictions (hypotheses) 

o Positive relation between SAT and teacher salary – those states with higher salaries should see higher 

student performance on the SAT 

o Negative relation between SAT and class size – those states with a higher student to teacher ratio should 

see lower SAT scores 

• Below is a screenshot of the data: 

https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-SAT-Data.sav
https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-SAT-Data.jasp
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o sat_total = SAT combined score 

o salary = teacher mean salary (1996?) 

o ratio = ratio of students to teachers (1996?) 

 

 
 

Regression Results 

JASP regression results are shown below. 

 

 
 

SAT’ = b0           + b1 ratio    + b2 salary 

SAT’ = 1113.87 + 2.66 ratio + -5.53 salary 

 

The hypotheses were not supported. The regression results show, instead, that: 

• Class size (student to teacher ratio) is positively related to SAT scores – the larger the class size, the higher SAT 

scores, but the coefficient was not significant. 

• Teacher salary was negatively related to SAT scores – the higher teacher salary, the lower SAT scores. The 

coefficient is statistically significant.  

 

Data Oddness 

Estimated regression coefficients seem odd and certainly contradict prior expectations. What else seems odd about the 

data? 
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Highest Scoring SAT  SAT Mean  Lowest Scoring SAT  SAT Mean 

North Dakota 1107  South Carolina 844 
Iowa 1099  Georgia 854 
Minnesota 1085  North Carolina 865 
Utah 1076  Pennsylvania 880 
Wisconsin 1073  Indiana 882 
South Dakota 1068  Rhode Island 888 
Kansas 1060  Florida 889 
Nebraska 1050  Hawaii 899 
Illinois 1048  New York 892 

 

Surprisingly there is a very large discrepancy in state mean scores as shown above. One should expect that mean scores 

would demonstrate less variability. The difference between the top and bottom scoring states is 1107-844 = 263 which is 

more than the combined test SD of 200.  

 

What is the nature of students who take the SAT across states?  

 

That question is not easily answered with the available data, but the College Board, writers of the SAT, do provide the 

percentage of high school graduates who take the SAT in each state, which is linked below and reported on many sites.  

 

https://reports.collegeboard.org/sat-suite-program-results    

 

The data table now includes the percentage of high school graduates, in the class of 1998, who took the SAT in each 

state. 

 

Highest Scoring 
SAT 

SAT Mean SAT Participation 
Rate 

 Lowest Scoring 
SAT 

SAT Mean SAT Participation 
Rate 

North Dakota 1107 5  South Carolina 844 58 
Iowa 1099 5  Georgia 854 65 
Minnesota 1085 9  North Carolina 865 60 
Utah 1076 4  Pennsylvania 880 70 
Wisconsin 1073 9  Indiana 882 58 
South Dakota 1068 5  Rhode Island 888 70 
Kansas 1060 9  Florida 889 57 
Nebraska 1050 9  Hawaii 899 48 
Illinois 1048 13  New York 892 74 

 

Note the large discrepancy of graduates who completed the SAT between high scoring and low scoring SAT states. Clearly 

this is an important difference that must be considering in the analysis of SAT scores.  

 

Why do some states have participation rates over 50% while others have participation rates under 10%? 

 

The answer is competition, culture, and graduation requirement.  

• The rival to the SAT is the ACT (developed by American College Testing). While most colleges and universities that 

require a standardized test for admission will accept either the SAT or ACT, the culture within a state seems to 

drive preferences.  

• I remember, in the early 1980s, that everyone in my high school planning to attend college took the SAT; the ACT 

was not considered an option. Likely similar cultures of preference exist in various states for the ACT or the SAT, 

and this partially explains the variation in SAT participation rates across states. Local availability of proctoring 

https://reports.collegeboard.org/sat-suite-program-results
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sites may be another reason. As a high school student, I recall the SAT being offered at a nearby high school, but 

don’t recall the ACT being offered nearby.  

• Some states require one or the other test as a high school graduation requirement. It serves as benchmark for 

assessment purposes.  

 

Why do those states with the lowest SAT participation rates have the highest means? 

 

Likely the ACT is the most popular test in those states with lowest SAT participation rates (e.g., North Dakota, Iowa, 

Minnesota, etc.), so the only students taking the SAT are those who plan to attend a college in another state or country 

that prefers the SAT. Additionally, those students are also likely to be among the brightest and know that a high SAT score 

will be needed to gain admission to the out-of-state college or university. In short, many of the strongest students take 

the SAT in those lowest participation rate states while students with weaker performance tend to take the ACT.  

 

Although I did not collect state participation rates of the ACT in 1998, I was able, in 2024, to find the document linked 

below which provides a graph showing SAT adjusted scores and ACT participation rates based upon 1996 results. The 

graph is shown below. 

 

https://www.nber.org/system/files/working_papers/w14265/w14265.pdf  

 

 
 

Using the above graph, I have provided approximate ACT participation rates for those states with the lowest SAT 

participation rate.  

 

 

https://www.nber.org/system/files/working_papers/w14265/w14265.pdf
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Highest Scoring SAT  ACT Participation Rate 
Approximate 

SAT  
Participation Rate 

North Dakota 78 5 
Iowa 64 5 
Minnesota 58 9 
Utah 66 4 
Wisconsin 63 9 
South Dakota 65 5 
Kansas 70 9 
Nebraska 72 9 
Illinois 68 13 

 

As these results show, and as the document cited above demonstrates, there is selection bias in participation in the SAT 

across states. Given this, it is necessary to control for participation rate when modeling SAT scores since there is selection 

bias in who completes the SAT by state.  

 

As this example demonstrates, it is important to consider model specification – predictor inclusion – to obtain proper 

coefficient estimates. Failure to include relevant, important predictors can provide misleading results as was shown by 

the first regression equation. This is an example of Simpson’s paradox (effects change directions once a variable is 

controlled) and of variable suppression (effects become larger, weaker, or change direction after controlling for a 

variable).  

 

Revised Regression Results 

JASP regression results are shown below. 

 

 
 

SAT’ = b0           + b1 ratio      + b2 salary    + b3 sat percent 

SAT’ = 1057.89 + -4.63 ratio + 2.55 salary + -2.91 sat percent 

 

The hypotheses are now supported. The regression results show that: 

• Class size (student to teacher ratio) is negatively related to SAT scores – the larger the class size, the lower SAT 

scores. The coefficient is statistically significant. 

• Teacher salary was positively related to SAT scores – the higher teacher salary, the higher SAT scores. The 

coefficient is statistically significant.  

• Additionally, the greater the percentage of students taking the SAT, the lower SAT mean scores. This coefficient is 

also significant.  
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Caution with Adjusted Means 

 Adjusted means use the regression line of the covariate for prediction, and it is possible that line is not 

consistent for subsets the population. This means it is possible an interaction exists between the covariate and groups 

compared. See Agresti text, section 13.5 for more information. If an interaction exists, then distinct regression slopes 

exist for each group, so adjust means must be considered across ranges of the covariate to provide a more appropriate 

understanding and interpretation of group differences. Read also Agresti textbook chapter 10 for more on control and 

adjustments.  

 Adjusted means are covered in more detail in the ANCOVA notes and presentations. 
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