Statistical Control and Mean Adjustment

1. Control

Control is the process of eliminating threats to inference about which/how various independent variables (1V)
contribute to variation on the dependent variable (DV). Control is about holding constant categories of variables.
Confounding variables are often the threats that must be controlled. Confounders are variables that are related
to both the model IVs and DVs but cause bias in regression and ANOVA if not included in the model or not
controlled by design.
Example: Research question — how does reading efficacy relate to reading achievement? Possible confounder:
Sex of student. Control: Examine relation of reading efficacy and reading achievement separately by sex, or for
only one sex.
Control is built into experimental designs to provide internal validity so causal mechanisms leading to variation
on DV can be associated with levels of IVs. This control by design helps to eliminate the effects of confounding
variables.
With experimental studies one attempts to obtain using various design methods such as

o randomization of experimental units (e.g., people, plants, etc.),

o including model covariates (e.g., variables that relate to or influence the DV),

o including model factors or blocking variables (e.g. categorical variables that also influence the DV),

o and holding constant levels of an IV to eliminate or manage the effects of that variable on the DV.

Examples of Control by Design

(a) Fertilizer for tomato yield

IV: Four categories of fertilizer
o Fish emulsion — nitrogen and other elements, applied at soil level periodically
o Chicken manure - aged, added to soil during plantings, and again to soil periodically
o Both
o None

DV: Yield, in pounds, of tomatoes

Other experimentally designed controls of possible confounding variables:
o 2 tomato plants per large pot,

same soil used,

same location within in a greenhouse to limit the effects of weather,

same amount of water applied at the same time daily,

and same amount of insecticide and fungicides applied to each pot.
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(b) Classroom mathematics with background music

IV: Three categories of music condition
o Calming: Giazotto’s Adagio: https://archive.org/details/albinoni-adagio-in-g-minor-12-sonatas-op.-6-c.rc.-
claudio-scimone-i-solisti-veniti-piero-toso
o Disruptive: John Contrane’s The Father and the Son and the Holy Ghost:
https://archive.org/details/cd _meditations john-coltrane/90-0308/
o None
DV: Student performance on an algebra test
Other experimentally designed controls of possible confounding variables:



https://archive.org/details/albinoni-adagio-in-g-minor-12-sonatas-op.-6-c.rc.-claudio-scimone-i-solisti-veniti-piero-toso
https://archive.org/details/albinoni-adagio-in-g-minor-12-sonatas-op.-6-c.rc.-claudio-scimone-i-solisti-veniti-piero-toso
https://archive.org/details/cd_meditations_john-coltrane/90-0308/

o Six teachers involved, each teaches three sections of algebra, and each will teach one section with each
background music playing (e.g., teacher A will each one section with calming, one with disruptive, and
the third section with no music)

o Order of conditions will vary by teacher to control time of day effects (e.g. teacher A will teach Calming,
Disruptive, and None; teacher B will teach Disruptive, None, and Calming; teacher C will teach None,
Calming, then Disruptive; etc.)

o Teachers will use a common script each day when delivering the mathematics presentation

o Length of each lesson daily will be one hour

o Music will be played during the one-hour lesson and will be played on a common device with a common
low volume (just above the threshold to hear in the background)

2. Statistical Control

e A means to partial, or hold constant, the effects of confounding variables (i.e., those that confuse interpretation
of IV effects on the DV because the confounding variable correlates to both the IV and DV).

e The logic of statistical control is like control in experimental studies but done statistically. With correlational, or
non-experimental data, statistical control does not offer causal interpretations like offered with data from
experimental designs.

e Statistical control allows one to compare the IV effects upon the DV by holding constant the effects of the
confounding variable. In essence, it is like examining the relation between the IV and DV for each level of the
confounding variable.

Example of Statistical Control (Regression with two categorical variables)
Example data files so those interested can replicate the analyses:

SPSS 8g-Statistical-Control-and-Adjustment-Salary-Data.sav
JASP 8g-Statistical-Control-and-Adjustment-Salary-Data.jasp

Salary by Sex (controlling for Rank) — Fictional Data
e Is there a difference in faculty salary by sex?
e Salary reported in thousands of dollars
e Salary means

o Females =$83.33
o Males =$66.67
Descriptive Statistics
Salary
Female Male
Valid 30 30
Missing 0 0
Mean 83,3333 G6.6667
Std. Deviation 19.0848 151155
Minimum 47.0000 450000
Maximum 1050000 1050000

e Regression results shows males earn $16.66 less than females (i.e., 66.67 — 83.33 = -16.66).


https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-Salary-Data.sav
https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-Salary-Data.jasp

Coefficients

Maodel Lnstandardized Standard Error Standardizeds t p
He ({Intercept) 75.0000 2.6747 28.0401 = 001
H, {Intercept) 833333 34872 238969 = 001
Sex (Male) -16.6667 49316 -3.3795 0.0013

= Standardized coefficients can only be computed for continuous predictors.

e Faculty rank (i.e., assistance, associate, professor) is a known factor in salary variation so it must be controlled to
obtain a more realistic assessment of salary differences by sex.

e Below are salaries by rank and sex.

Descriptives

Descriptives - Salary

Rank Sex M Mean sD SE Coefiicient of variation
Assistant Female A 50.0000 2.5495 1.1402 0.0510
Male 15 50.0000 2.0702 0.5345 0.0414
Associate Female 10 75.0000 2.4037 0.7601 0.0320
Male 10 75.0000 24037 0.7601 0.0320
Professor Female 15 100.0000 2.2039 0.5690 0.0220
Male B 100.0000 41231 1.8438 0.0412

e To statistically control for rank, add it to the regression of salary on sex. Results are provided below and now
show that once rank is controlled, there is no salary difference between sexes as demonstrated in the descriptive
table above. Thus, regression was able to offer control of rank, a potentially confounding variable, and clarify the

salary by sex relation.

Coeflicients
Model Unstandardized Standard Error Standardizeds t p
Hy {Intercept) 75.000 2675 28.040 < 001
H, (Intercept) 50.000 0.744 67.235 = 001
Sex (Male) 3 149x10~ 14 0.682 3 148x10" 14 1.000
Rank (Associate) 25.000 0.782 31.976 = 001
Rank (Professor) 50.000 0.836 59.823 < 001

= Standardized coefficients can only be computed for continuous predictors.

If salary is the same between the sexes for each rank, why do females have an overall higher mean salary when rank is

ignored?




3. Statistical Adjustment

e  When more than one IV is present in a regression model, the slope estimates are known as partial coefficients or
partial slopes and represent the expected change in the DV for a one-unit change in the IV controlling for, or
holding constant, the effects of other IVs in the regression equation.

e The predicted means from a regression equation take into account the partial effects of each IV, and these
predicted means are known as adjusted means or marginal means.

e As previously noted, regression and ANOVA models are mathematically the same and both are part of the
general linear model. Quantitative Vs in the ANOVA model are called covariates and the name for such models is
ANCOVA (analysis of covariance). Like regression, group comparisons in ANCOVA are performed on marginal
means (adjusted means) in which the DV means are adjusted for the contributions of each IV in the model.

Example of Statistical Adjustment (Regression with one categorical and one quantitative variable)
Example data files so those interested can replicate the analyses:

SPSS 8g-Statistical-Control-and-Adjustment-Pretest-Posttest-Data.sav
JASP 8g-Statistical-Control-and-Adjustment-Pretest-Posttest-Data.sav

The screenshot below shows fictional data used to illustrate statistical adjustment in regression and ANCOVA.
e Two group: Experimental and Control
e DV: Posttest scores
e Posttest means by group
o Experimental m=89.50
o Control m = 83.50
o Mean difference = 89.50 — 83.50 = 6.00
e A pretest is common for experimental studies because it provides a way to check for group equivalence, at least
on the variable of interest, and provides a way to reduce error variance in the DV for regression and ANCOVA
models which leads to additional precision for estimates and power for tests.
e To better illustrate adjustments, three pretest scores are provided in the data.
o Pretest equal for both groups
= Experimental m=32.50
= Control m = 32.50
o Pretest control group lower: pretest is 5 points lower for the control group (5 points subtracted from
initial pretest scores)
=  Experimental m=32.50
= Control m =27.50
o Pretest control group higher: pretest is 5 points higher for the control group (5 points added to initial
pretest scores)
= Experimental m=32.50
= Control m = 37.50
e Data for the example are shown below.


https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-Pretest-Posttest-Data.sav
https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-Pretest-Posttest-Data.sav
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e In each scenario pretest scores correlate positively with posttest scores (the usual situation in experimental

research)

e Descriptive statistics for each variable by group are shown below

Group Descriptives

Group M Mean SD SE
Paosttest Control 8 83500000000 7.348469225 2598076211
Experimental 8 89.500000000 7.348469228 2598076211
Pretest-equal Control 8 32500000000 5976143047 2. 112885637
Experimental 8 32500000000 5976143047 2. 112885637
Pretest-ControlLower Control 8 27.500000000 5.976143047 2112885637
Experimental & 32500000000 5976143047 2. 112885637
Pretest-ControlHigher Control 8 37500000000 5.976143047 2. 112885637
Experimental 8 32 500000000 5976143047 2. 112885637

Pretest Means Equal

If there are no differences in the pretest means for both groups, are any adjustments needed to account for pre-
existing group differences? Use regression to calculate the adjusted mean for posttest scores.

Table A: No difference in pretest scores

Group Pretest M Observed Adjusted
Posttest M Posttest M
Experimental 32.50 89.50 ?
Control 32.50 83.50 ?
Mean Difference = 0.00 6.00 ?




Coefficients
Model Unstandardized Standard Error Standardizeds t p
Heo (Intercept) §6.500000000 1.936491673 44 668407926 = .001
H, (Intercept) 60.100000000 9246995354 6499408478 < 001
Group (Experimental) G.000000000 3.090929659 1.941163554 0.074233065
Pretest-equal 0.720000000 0.276461153 0.536656315 2604344197 0.021825324
3 Standardized cosfficients can only be computad for continuous pradictors.

Prediction equation
Posttest’ = 60.10 + 6.00 (Group) + 0.72 (pretest)

To obtain adjusted means for both groups, set the pretest score at the overall mean which is 32.50 and plug that value
into the regression equation. Hence, the regression equation holds constant pretest scores at 32.50 and provides a
prediction of the group means if both groups had the same mean pretest score.

Control group adjusted mean:

Posttest’ = 60.10 + 6.00 (Group) + 0.72 (pretest)
Posttest’ = 60.10 + 6.00 (0) +0.72 (32.50)
Posttest’ = 60.10 +23.4
Posttest’ = 83.50

Experimental group adjusted mean:

Posttest’ = 60.10 + 6.00 (Group) + 0.72 (pretest)
Posttest’ = 60.10 + 6.00 (1) +0.72 (32.50)
Posttest’ = 60.10 + 6.00 +23.4
Posttest’ = 89.50

Thus, the predicted means are the same as the observed means because there is no adjustment since both groups had
the same mean on the covariate (pretest scores).

Table A: No difference in pretest scores

Group Pretest M Observed Adjusted
Posttest M Posttest M
Experimental 32.50 89.50 89.50
Control 32.50 83.50 83.50
Mean Difference = 0.00 6.00 6.00

Pretest Mean for Control Group Lower
If the control group starts with a lower pretest mean score, are any adjustments needed to account for pre-
existing group differences? Use regression to calculate the adjusted mean for posttest scores.

Table B: Control group starts study with lower pretest scores

Group Pretest M Observed Adjusted
Posttest M Posttest M

Experimental 32.50 89.50 ?

Control 27.50 83.50 ?

Mean Difference = 0.00 6.00 ?




Note that the control group starts the experiment with less knowledge and therefore a lower pretest score. This could
partially explain why their posttest scores were lower. Therefore, pretest differences between the groups must be taken
into account.

Coefficients
Model Unstandardized Standard Error Standardizeds t p
Ho (Intercept) 86.500000000 1.936491673 44 668407926 < 001
H, {Intercept) 63.700000000 7.910606317 8.052480106 < .001
Group (Experimental) 2.400000000 3.385943795 0708812711 0.490957096
Pretest-ControlLower 0.720000000 0.276461153 0587877538 2604344187 0.021825324

s Standardized coefficients can only be computed for continuous predictors.

Prediction equation
Posttest’ = 63.70 + 2.40 (Group) + 0.72 (pretest)

To obtain adjusted means for both groups, set the pretest score at the overall mean which is 30.00 and plug that value
into the regression equation. Hence, the regression equation holds constant the pretest score at 30.00 and provides a
prediction of the group means if both groups had the same mean pretest score.

Control group adjusted mean:

Posttest’ = 63.70 + 2.40 (Group) + 0.72 (pretest)
Posttest’ = 63.70 + 2.40 (0) +0.72 (30.00)
Posttest’ = 63.70 +21.6
Posttest’ = 85.30

Experimental group adjusted mean:

Posttest’ = 63.70 + 2.40 (Group) + 0.72 (pretest)
Posttest’ =63.70 + 2.40 (1) +0.72 (30.00)
Posttest’ = 63.70 + 2.40 +21.6
Posttest’ = 87.70

The predicted means are now adjusted with the group starting with a lower pretest score adjusted upward and the group
with the higher pretest score adjusted downward. Thus, regression has compensated the group means for their relative

starting position on the covariate of pretest scores.

Table B: Control group starts study with lower pretest scores

Group Pretest M Observed Adjusted
Posttest M Posttest M
Experimental 32.50 89.50 87.70
Control 27.50 83.50 85.30
Mean Difference = 0.00 6.00 2.40

Pretest Mean for Control Group Higher
If the control group starts with a higher pretest mean score, are any adjustments needed to account for pre-
existing group differences? Use regression to calculate the adjusted mean for posttest scores.



Table C: Control group starts study with higher pretest scores

Group Pretest M Observed Adjusted
Posttest M Posttest M
Experimental 32.50 89.50 ?
Control 37.50 83.50 ?
Mean Difference = 0.00 6.00 ?
Coefficients
Model Unstandardized Standard Error Standardizeds t P
He {Intercept) 26.500000000 1.936491673 44 668407926 < 001
H. (Intercept) 56.500000000 10.595173066 5332616999 < 001
Group (Experimental) 9.600000000 3.385943795 2835250843 0.014048535
Pretest-ControlHigher 0.720000000 0.276461153 0587877538 2604344197  0.021825324
s Standardized coefficiants can only be computed for continuous predictors.

Prediction equation
Posttest’ = 56.50 + 9.60 (Group) + 0.72 (pretest)

To obtain adjusted means for both groups, set the pretest score at the overall mean which is 35.00 and plug that value
into the regression equation. Hence, the regression equation holds constant the pretest score at 35.00 and provides a
prediction of the group means if both groups had the same mean pretest score.

Control group adjusted mean:

Posttest’ = 56.50 + 9.60 (Group) + 0.72 (pretest)
Posttest’ = 56.50 + 9.60 (0) +0.72 (35.00)
Posttest’ = 56.50 +25.2
Posttest’ = 81.7

Experimental group adjusted mean:

Posttest’ = 56.50 + 9.60 (Group) + 0.72 (pretest)
Posttest’ = 56.50 + 9.60 (1) +0.72 (35.00)
Posttest’ = 56.50 + 9.60 +25.2
Posttest’ = 91.30

The predicted means are now adjusted with the group starting with a lower pretest score adjusted upward and the group
with the higher pretest score adjusted downward. Thus, regression has compensated the group means for their relative

starting position on the covariate of pretest scores.

Table C: Control group starts study with higher pretest scores

Group Pretest M Observed Adjusted
Posttest M Posttest M
Experimental 32.50 89.50 91.30
Control 37.50 83.50 81.70
Mean Difference = 0.00 6.00 9.60

If these data were analyzed with the ANCOVA command in SPSS or JASP, the same results would be obtained. For
example, below is JASP output from ANCOVA showing marginal means (adjusted means) using the pretest scores +5 for



the control group (i.e., the results shown in Table C above). Note the calculated adjusted means above match the
marginal means reported by JASP.

AMCOWVA - Posttast ¥

Cases Surn of Squares df Mean Square F p
Group 307.200000000 1 307.200000000 8.038647343 0.014048535
Pretest-ControlHigher 259.200000000 1 259.200000000 6.782608696  0.021825324
Residuals 496.800000000 13 38.215384815

Note. Type Il Sum of Squares

Marginal Means

Marginal Means - Group

95% CI for Mean Difference
Group Marginal Mean Lower Upper SE

Control §1.700000000 76.747798194 86.652201806 2.292294786
Experimental 91.300000000 86.347798194 96.252201806 2.292294786

4. Validity of Regression and Model Specification
e Gelman and Hill (2006, p 45) explain that validity of regression means that the
o data analyzed must link to the research questions driving the study;
o IV and DV measures should demonstrate score validity (i.e., scores represent the construct);
o model should include related IVs and exclude unrelated IVs; and
o the regression model should use data from a representative sample of the target population.

e Pedhazur (1997) notes that model specification refers to proper inclusion of relevant predictors, and ensuring

the model is additive (e.g., interaction terms are addressed) and linear (e.g., non-linear components are
addressed).

e The focus here is on inclusion of relevant predictors. Pedhazur explains that failure to include relevant predictors

can lead to bias parameter estimates, i.e., regression coefficients can be wrong and misleading.
Example of Model Specification: Excluding a Relevant Predictor (Regression with multiple quantitative variables)
Example data files so those interested can replicate the analyses:

SPSS 8g-Statistical-Control-and-Adjustment-SAT-Data.sav
JASP 8g-Statistical-Control-and-Adjustment-SAT-Data.jasp

e Data: State level variables (n = 50) collected in 1998
o DV: Mean Scholastic Aptitude Test (SAT) combined score for mathematics and verbal per state
o IV: Average (mean) ratio of students to teachers (i.e., a proxy for class size) per state
o IV: Mean teacher salary in thousands of dollars per state

e Predictions (hypotheses)

o Positive relation between SAT and teacher salary — those states with higher salaries should see higher

student performance on the SAT

o Negative relation between SAT and class size — those states with a higher student to teacher ratio should

see lower SAT scores
e Below is a screenshot of the data:


https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-SAT-Data.sav
https://bwgriffin.com/gsu/courses/edur8132/notes/reg/8g-Statistical-Control-and-Adjustment-SAT-Data.jasp

o sat_total = SAT combined score
o salary = teacher mean salary (19967)
o ratio = ratio of students to teachers (19967?)

h § I ) state E ratio £ salary (4 sat_percent [ sat_total I i region
1 Mississippi 17.5 26.818 4 1036 South

&l Utah 243 29.082 4 1076 West

3 South Dakota 144 25.994 5 1068 Midwest
4 | lowa 15.8 3151 5 1099 Midwest
5 | North Dakota 15.3 26.327 5 1107 Midwest
6 | Arkansas 17.1 28.934 6 1005 South

T | Alabama 17.2 31.144 8 1029 South

8 Louisiana 16.8 26.461 9 1021 South

9 Oklahoma 155 28.172 9 1027 South

10 | Missouri 15.5 31.189 9 1045 Midwest
11 | Nebraska 14.5 30.922 9 1050 Midwest
12 | Kansas 15.1 34.652 9 1060 Midwest
13 | wisconsin 159 37.746 9 1073 Midwest
14 | Minnesota 17.5 35.948 9 1085 Midwest
15 | Wyoming 149 31.285 10 1001 West

16 | Kentucky 17 32.257 11 939 South
17 | New Mexico 17.2 2B8.493 1 1015 West

18 | Michigan 201 41.895 " 1033 Midwest

Regression Results
JASP regression results are shown below.

Coefficients
Model Unstandardized Standard Error Standardized t p
He (Intercept) 965.920000000 10.581224805 91.286218546 < 001
H, (Intercept) 1113.877434677 93.002628595 11.976838198 = .001
ratio 2.665842353 4307096146 0.080749787 0.618941919 0538943193
salary —-5.538449227 1.642984598 -0.439790836 -3.370968441 0.001505615

SAT’ = b0 +blratio + b2 salary
SAT’ = 1113.87 + 2.66 ratio + -5.53 salary

The hypotheses were not supported. The regression results show, instead, that:
e (lass size (student to teacher ratio) is positively related to SAT scores — the larger the class size, the higher SAT
scores, but the coefficient was not significant.
e Teacher salary was negatively related to SAT scores — the higher teacher salary, the lower SAT scores. The
coefficient is statistically significant.

Data Oddness

Estimated regression coefficients seem odd and certainly contradict prior expectations. What else seems odd about the
data?
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Highest Scoring SAT SAT Mean Lowest Scoring SAT SAT Mean

North Dakota 1107 South Carolina 844
lowa 1099 Georgia 854
Minnesota 1085 North Carolina 865
Utah 1076 Pennsylvania 880
Wisconsin 1073 Indiana 882
South Dakota 1068 Rhode Island 888
Kansas 1060 Florida 889
Nebraska 1050 Hawaii 899
lllinois 1048 New York 892

Surprisingly there is a very large discrepancy in state mean scores as shown above. One should expect that mean scores
would demonstrate less variability. The difference between the top and bottom scoring states is 1107-844 = 263 which is
more than the combined test SD of 200.

What is the nature of students who take the SAT across states?

That question is not easily answered with the available data, but the College Board, writers of the SAT, do provide the
percentage of high school graduates who take the SAT in each state, which is linked below and reported on many sites.

https://reports.collegeboard.org/sat-suite-program-results

The data table now includes the percentage of high school graduates, in the class of 1998, who took the SAT in each
state.

Highest Scoring SAT Mean SAT Participation Lowest Scoring SAT Mean SAT Participation
SAT Rate SAT Rate
North Dakota 1107 5 South Carolina 844 58
lowa 1099 5 Georgia 854 65
Minnesota 1085 9 North Carolina 865 60
Utah 1076 4 Pennsylvania 880 70
Wisconsin 1073 9 Indiana 882 58
South Dakota 1068 5 Rhode Island 888 70
Kansas 1060 9 Florida 889 57
Nebraska 1050 9 Hawaii 899 48
Illinois 1048 13 New York 892 74

Note the large discrepancy of graduates who completed the SAT between high scoring and low scoring SAT states. Clearly
this is an important difference that must be considering in the analysis of SAT scores.

Why do some states have participation rates over 50% while others have participation rates under 10%?

The answer is competition, culture, and graduation requirement.

e Therival to the SAT is the ACT (developed by American College Testing). While most colleges and universities that
require a standardized test for admission will accept either the SAT or ACT, the culture within a state seems to
drive preferences.

e | remember, in the early 1980s, that everyone in my high school planning to attend college took the SAT; the ACT
was not considered an option. Likely similar cultures of preference exist in various states for the ACT or the SAT,
and this partially explains the variation in SAT participation rates across states. Local availability of proctoring
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sites may be another reason. As a high school student, | recall the SAT being offered at a nearby high school, but
don’t recall the ACT being offered nearby.

e Some states require one or the other test as a high school graduation requirement. It serves as benchmark for

assessment purposes.

Why do those states with the lowest SAT participation rates have the highest means?

Likely the ACT is the most popular test in those states with lowest SAT participation rates (e.g., North Dakota, lowa,

Minnesota, etc.), so the only students taking the SAT are those who plan to attend a college in another state or country

that prefers the SAT. Additionally, those students are also likely to be among the brightest and know that a high SAT score
will be needed to gain admission to the out-of-state college or university. In short, many of the strongest students take
the SAT in those lowest participation rate states while students with weaker performance tend to take the ACT.

Although | did not collect state participation rates of the ACT in 1998, | was able, in 2024, to find the document linked
below which provides a graph showing SAT adjusted scores and ACT participation rates based upon 1996 results. The

graph is shown below.

https://www.nber.org/system/files/working papers/w14265/w14265.pdf

Figure 1B. Average 1996 ACT Score versus ACT Participation Rate
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Using the above graph, | have provided approximate ACT participation rates for those states with the lowest SAT

participation rate.
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Highest Scoring SAT ACT Participation Rate SAT

Approximate Participation Rate
North Dakota 78 5
lowa 64 5
Minnesota 58 9
Utah 66 4
Wisconsin 63 9
South Dakota 65 5
Kansas 70 9
Nebraska 72 9
lllinois 68 13

As these results show, and as the document cited above demonstrates, there is selection bias in participation in the SAT
across states. Given this, it is necessary to control for participation rate when modeling SAT scores since there is selection
bias in who completes the SAT by state.

As this example demonstrates, it is important to consider model specification — predictor inclusion — to obtain proper
coefficient estimates. Failure to include relevant, important predictors can provide misleading results as was shown by
the first regression equation. This is an example of Simpson’s paradox (effects change directions once a variable is
controlled) and of variable suppression (effects become larger, weaker, or change direction after controlling for a
variable).

Revised Regression Results
JASP regression results are shown below.

Coefficients
Model Unstandardized Standard Error Standardized t p
He (Intercept) 965.920000000 10.681224805 91286218546 =< .001
H, (Intercept) 1057.898162003 44 328668530 23 864875646 < .001
ratio -4.639428046 2121514211 -0.140530751 -2.1868474599 0.03387V6517
salary 2.552470111 1.004518263 0.202663624 2540989253 0.014491262
sat_percent -2.913350207 0.225243593 -1.042070438 -12.764214640 < .001
SAT’ = b0 +blratio +b2salary + b3 satpercent

SAT’ = 1057.89 + -4.63 ratio + 2.55 salary + -2.91 sat percent

The hypotheses are now supported. The regression results show that:
e C(lass size (student to teacher ratio) is negatively related to SAT scores — the larger the class size, the lower SAT
scores. The coefficient is statistically significant.
e Teacher salary was positively related to SAT scores — the higher teacher salary, the higher SAT scores. The
coefficient is statistically significant.
e Additionally, the greater the percentage of students taking the SAT, the lower SAT mean scores. This coefficient is
also significant.

13



Caution with Adjusted Means

Adjusted means use the regression line of the covariate for prediction, and it is possible that line is not
consistent for subsets the population. This means it is possible an interaction exists between the covariate and groups
compared. See Agresti text, section 13.5 for more information. If an interaction exists, then distinct regression slopes
exist for each group, so adjust means must be considered across ranges of the covariate to provide a more appropriate
understanding and interpretation of group differences. Read also Agresti textbook chapter 10 for more on control and
adjustments.

Adjusted means are covered in more detail in the ANCOVA notes and presentations.
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