Simple Linear Regression: One Dichotomous IV

1. Purpose

As noted before regression is used both to explain and predict variation in DVs, and adding to the equation categorical variables extends regression flexibility and enables one to perform group contrasts in a way that is mathematically identical to ANOVA. Simple linear regression with one qualitative IV variable is essentially identical to linear regression with quantitative variables. The primary difference between the two is how one interprets the regression coefficients.

2. Regression Equations

Population

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}, \tag{1}
\end{equation*}
$$

where
$Y_{i}=$ the $\mathrm{i}^{\text {th }}$ student's score,
$\beta_{1}=$ population regression coefficient expressing the relationship between X and Y,
$\beta_{0}=$ population intercept for the equation, and
$\varepsilon_{\mathrm{i}}=$ random error term.

Population Prediction Equation

$Y^{\prime}=\beta_{0}+\beta_{1} X_{i}$

Where Y^{\prime} is the predicted value of the DV in the population. Note absence of ε; since means are predicted based upon the equation, individual score deviations from the prediction are not included.

$$
\begin{array}{r}
\text { Sample } \\
Y_{i}=b_{0}+b_{1} X_{i}+e_{i}, \tag{2}
\end{array}
$$

where
b_{0} is the sample intercept, b_{1} is the sample regression coefficient, and e is the sample residual term in the model.

Note: Error denotes population deviations and residual denotes sample deviations.

Sample Prediction Equation

$Y^{\prime}=b_{0}+b_{1} X_{i}$

Note that the above equations are exactly the same as found when the IV is quantitative (refer back to notes on regression with one quantitative predictor).

2. Fictional Data for Group Comparison

Table 1: Fictional Data by Sex (X)

Y	X	$\mathrm{X}=$ Sex	Mean
1	0	M	
2	0	M	Male
3	0	M	$\mathrm{m}=3$
4	0	M	
5	0	M	
6	1	F	
7	1	F	Female
8	1	F	$\mathrm{~m}=8$
9	1	F	
10	1	F	

Note there are two groups $\mathrm{X}=0$ and $\mathrm{X}=1$ (i.e., $\mathrm{X}=0=\mathrm{Male}, \mathrm{X}=1=$ Female).

JASP Regression Results for Fictional Data

Coeefficients						
Model		Unstandardized	Standard Error	Standardized	t	p
H_{0}	(Intercept)	5.500	0.957		5.745	$<.001$
H_{1}	(Intercept)	3.000	0.707		4.243	0.003
	Sex-dummy	5.000	1.000	0.870	5.000	0.001

(a) Given this regression equation, $Y^{\prime}=b_{0}+b_{1} X_{i}$, what would be the value of b_{0} ?

Since bo is the mean for the comparison group (dummy $=0, m=3$) it will equal 3
(b) What would be the value of b_{1} ?

Since b1 is the difference between the dummy group 1 (female) and group 0 (males) it will be $8-3=5$.
(c) Find the coefficient estimates for the fictional data in SPSS or JASP.

Enter data and run regression! See above JASP results.
$Y_{i}=b_{0}+b_{1} X_{i}+e_{i}$,
$Y_{i}=3.0+5.0\left(X_{i}\right)+e_{i}$,
(d) What is the literal interpretation for b_{0} ?

It is the predicted value of Y for the reference group when $X=0$.
(e) What is the literal interpretation for b_{1} ?

It is the mean difference in Y between the two modeled groups, the reference group ($X=0$) and the comparison group $(X=1)$.

3. Dummy Variable Coding

One method for representing categorical IV in regression is dummy coding. One group is coded with 0 , the other with 1. The variable X in Table 1 above represents dummy coding for sex. A dummy variable in regression represents the mean difference between the groups coded with 0 and 1. In the current example, the regression equation is:
$Y_{i}=b_{0}+b_{1} X_{i}+e_{i}$,
$Y_{i}=3.0+5.0\left(X_{i}\right)+e_{i}$,

Males are coded as $X=0$, females coded as $X=1$, so:

Predicted Y^{\prime} mean for males $=Y_{i}=b_{0}+b_{1} X_{i}$
Predicted Y^{\prime} mean for males $=Y_{i}=b_{0}+b_{1} \times 0$
Predicted Y^{\prime} mean for males $=Y_{i}=b_{0}$

Predicted Y^{\prime} mean for males $=Y_{i}=3.0+5.0\left(X_{i}\right)$
Predicted Y^{\prime} mean for males $=Y_{i}=3.0+5.0(0)$
Predicted Y^{\prime} mean for males $=Y_{i}=3.0$
and the predicted Y^{\prime} mean for females

Predicted Y^{\prime} mean for females $=Y_{i}=b_{0}+b_{1} X_{i}$
Predicted Y^{\prime} mean for females $=Y_{i}=b_{0}+b_{1} \times 1$
Predicted Y^{\prime} mean for females $=Y_{i}=b_{0}+b_{1}$

Predicted Y^{\prime} mean for females $=Y_{i}=3.0+5.0\left(X_{i}\right)$
Predicted Y^{\prime} mean for females $=Y_{i}=3.0+5.0(1)$
Predicted Y^{\prime} mean for females $=Y_{i}=3.0+5.0$
Predicted Y^{\prime} mean for females $=Y_{i}=8.0$

Given the above, note the following:
$b_{0}=$ predicted Y^{\prime} mean for group coded with dummy $=0$;
$b_{0}+b_{1}=$ predicted Y^{\prime} mean for group coded with dummy $=1$;
$\mathrm{b}_{1}=$ predicted mean difference in Y between the two groups.

4. Fictional Data Example \#2

Using the data below, create a dummy variable to represent student classification level.

Table 2: Fictional Data of Attitude Toward Recreation Activity Center and Student Classification Level

Attitude toward RAC at GSU	Student Level	Dummy Variable	
2	Graduate	1	0
3	Graduate	1	0
5	Graduate	1	0
1	Graduate	1	0
2	Graduate	1	0
4	Undergraduate	0	1
5	Undergraduate	0	1
3	Undergraduate	0	1
5	Undergraduate	0	1
4	Undergraduate	0	1

Note: Attitude toward RAC scoring: 1 = very unhappy, 5 = very happy

JASP Regression Model for RAC Attitudes and Student Level

Answer the following questions.
(a) What is the coefficient estimates for this model, that is, what are the values for b_{0} and b_{1} ?

$$
\begin{aligned}
& Y_{i}=b_{0}+b_{1} X_{i}+e_{i}, \\
& Y_{i}=2.6+1.6\left(X_{i}\right)+e_{i}
\end{aligned}
$$

(b) What is the literal interpretation for b_{0} ?

Predicted value of RAC attitude for graduate students, 2.60
(c) What is the literal interpretation for b_{1} ?

The mean difference between undergraduate and graduate students, 1.6
(d) What is the predicted mean level of attitude for graduate students?

$$
\begin{aligned}
& Y^{\prime}=2.6+1.6(0)=2.6+0=2.6 \\
& b_{0}=2.6
\end{aligned}
$$

(e) What is the predicted mean level of attitude for undergraduate students?

$$
\begin{aligned}
Y^{\prime} & =2.6+1.6\left(\mathrm{X}_{\mathrm{i}}\right) \\
\mathrm{Y}^{\prime} & =2.6+1.6(1)=2.6+1.6=4.2
\end{aligned}
$$

5. Inferential Procedures for Regression Coefficient

Hypothesis testing is performed in the same way as discussed previously with regression.

5a. t-ratios

$\mathrm{b}_{1} / \mathrm{se}=\mathrm{t}$-ratio
and
$\mathrm{H}_{0}: \beta_{1}=0.00$
$\mathrm{H}_{1}: \beta_{1} \neq 0.00$

- Recall that β_{1} is the mean difference between the two groups.
- If H_{0} is not rejected, then one may conclude that the groups do not differ statistically.
- If, however, H_{0} is rejected, then one may conclude that the mean difference between the groups is statistically significant.

5b. Confidence Intervals

If 0.00 lies within the confidence interval, fail to reject Ho .
If 0.00 does not lie within the confidence interval, reject Ho.

Dummy Variable for Two Groups: t-test and ANOVA Linkage

Note that H_{0} listed above is identical to the null hypothesis for the two-independent samples t-test:
$H_{0}: \mu_{1}=\mu_{2}$
or
$H_{0}: \mu_{1}-\mu_{2}=0.00$,
that is, the difference between the two groups is 0.00 .
Also note that the null hypothesis for ANOVA with only two groups is identical to the two-independent samples t-test and regression with a dummy IV. The null in ANOVA for two groups is:
$H_{0}: \mu_{1}=\mu_{2}$

As these hypotheses reveal, regression with a dummy variable is identical to the two-independent samples t-test and to ANOVA with two groups.
(a) Show result similarity with the above fictional data using t-test and ANOVA.
(b) Note when $\mathrm{df}_{1}=1$, then $F=\mathrm{t}^{2}$

JASP t-test for RAC Attitude and Student Level

Independent Samples T-Test

					$95 \% \mathrm{Cl}$ for Mean Difference		
	t	df	p	Mean Difference	SE Difference	Lower	Upper
RAC-attitude	-2.066	8	0.073	-1.600	0.775	-3.386	0.186
Note. Student's t-test.							

Regression and t-test results are the same: mean difference, standard error, t-ratio, p-value, and Cl except that signs are reversed since order of group mean comparisons were reversed (grade mean - undergrad mean rather than undergrade mean - grad mean). Below are t-test results with group comparisons reversed to match regression.

JASP t-test for RAC Attitude and Student Level with Order of Means Reversed

Independent Samples T-Test							
					$95 \% \mathrm{Cl}$ for Mean Difference		
	t	df	p	Mean Difference	SE Difference	Lower	Upper
RAC-attitude	2.066	8	0.073	1.600	0.775	-0.186	3.386
Note. Student's t-test.							

JASP ANOVA RAC Attitude Results

ANOVA - RAC-attitude \mathbf{V}						
Cases	Sum of Squares	df	Mean		F	p
StudentLevel	6.400	1			4.267	0.073
Residuals	12.000	8				
Note. Type III Sum of Squares						
Descriptives						
Descriptives - RAC-attitude						
StudentLevel	N	Mean	SD	SE	Coe	of variation
Graduate	5	2.600	1.517	0.678		0.583
Undergraduate	5	4.200	0.837	0.374		0.199

Post Hoc Tests

Standard

Post Hoc Comparisons - StudentLevel

		Mean Difference	SE	t	$\mathrm{p}_{\text {tukey }}$
Undergraduate	Graduate	1.600	0.775	2.066	0.073

The ANOVA results above also match regression with the same F ratio (4.267) and p-value (0.073), sums of squares and mean squares, and degrees of freedom.

6. Confidence Intervals (CI)

Cl represents an upper and lower bound to the point estimate of the regression coefficient. Thus, Cls indicate the precision of the particular estimate. The Cl for b is:
$\mathrm{b} \pm$ critical $\mathrm{t}_{(\alpha / 2, \mathrm{df})} \times \mathrm{SE}_{\mathrm{b}}$
where t is the critical t-value obtained from a table of t values representing a two-tailed alpha (α) level (such as .05) with degrees of freedom equal to $n-k-1$, and SE_{b} is the standard error for the regression coefficient.

Also, as before, if 0.00 lies within the Cl , one will fail to reject H_{0}.

7. Model Fit

As before, model fit remains the same: R^{2}, adjusted R^{2}, SEE (standard error of estimate; the standard deviation of the residuals), and MSE (mean squared estimate, variance of the residuals). For example:
$R^{2}=$ Squared Pearson r between DV and Predicted DV
adj. $\mathrm{R}^{2}=1-\frac{M S E}{\operatorname{VAR}(Y)}=$ calculate for current example
Similarly, residuals are calculated in the same way:

$$
e=Y-Y^{\prime}
$$

adj. $\mathrm{R}^{2}=$ Squared Pearson r between DV and Predicted DV
(a) Calculate e for first observation in sample data.
(b) Calculate e for last observation in sample data.

8. Overall Model Fit and Statistical Inference

To test the regression model as a whole-to learn whether any of the predictors are related to Y , or to learn whether the combination of predictors predict more variation in Y than one would expect by chance-one may test whether R^{2} differs from 0.00 :

$$
H_{0}: R^{2}=0
$$

or

$$
\mathrm{H}_{0}: \beta_{\mathrm{j}}=0.00 \text { (all regression slopes equal } 0.00 \text {) }
$$

As before, the overall F test is used to test H_{0}. F is calculated, like ANOVA, using any of the following formulae:

$$
\mathrm{F}=\frac{S S R / d f_{1}}{S S E / d f_{2}}=\frac{S S R / k}{S E E /(n-k-1)}=\frac{M S_{R}}{M S E}
$$

where;

$$
\begin{aligned}
\mathrm{SSR} & = & \text { regression sums of squares; } \\
\mathrm{SSE} & = & \text { residual sums of squares; } \\
\mathrm{df}_{1} & = & \text { regression degrees of freedom; } \\
\mathrm{df}_{2} & = & \text { residual degrees of freedom; }
\end{aligned}
$$

$\mathrm{k} \quad=\quad$ number of independent variables (vectors) in the model;
$\mathrm{n}=$ sample size (or number of observations in sample);
$\mathrm{MS}_{\mathrm{R}} \quad=\quad$ mean square (same as ANOVA) due to regression (e.g., between);
MSE = mean square error (same as ANOVA mean square within).
As before there are two sources for degrees of freedom:

$$
\mathrm{df}_{1}=\mathrm{k} \text { (number of predictors in regression equation) }
$$

and

$$
\mathrm{df}_{2}=\mathrm{n}-\mathrm{k}-1
$$

Illustrate calculation of F ratio with current data, find df and critical F - do we reject H_{0} ?
JASP regression ANOVA results

9. Reporting Regression Results

Below is an example of APA styled reporting of results using the first fictional data given in Table 1:
Table 3: Descriptive Statistics and Correlations between RAC Attitude and Student Level

Variable	Correlations		
	RAC Attitude	Undergrad. Indicator	
RAC Attitude	---		
Undergraduates	.59		---
Mean	3.40		0.50
SD	1.43		0.57
n	10		10
RAC Attitude	M	SD	n
Undergraduates	4.20	0.837	5
Graduates	2.60	1.517	5

Note. $\mathrm{n}=10$. Undergraduate indicator coded $1=$ undergraduate students and $0=$ graduate students.

* $p<.05$

Table 4: Summary of Regression of RAC Attitude on Student Level

Variable	b	se b	$95 \% \mathrm{Cl}$	t
Undergraduate	1.60	0.775	$-0.19,3.87$	2.07
Intercept	2.60	0.548	$1.34,3.86$	4.74^{*}

Note. $\mathrm{R}^{2}=.35$, adj. $\mathrm{R}^{2}=.27, \mathrm{~F}=4.27, \mathrm{MSE}=1.50, \mathrm{df}=1,8, \mathrm{n}=10$; Undergraduate coded $0=$ graduates and $1=$ undergraduates.
*p < 05 .
Regression results show that there is not a significant difference, at the .05 level, in RAC attitude means between undergraduate and graduate students. This finding suggests the 1.60 point mean difference between the two groups is possibly due to chance differences (, although the small sample size of $n=10$ may also impact the power of this test).

The bit in parentheses can be added when sample sizes are small to acknowledge the effect of small sample sizes on the power of a test to detect differences or relations.

Note: The above regression table does not contain standardized coefficient estimates or estimates of ΔR^{2} estimates. For simple regression with one qualitative variable, neither of these estimates are applicable.

10. Exercises

(1) A teacher is convinced that frequency of testing within her classroom increases student achievement. She runs an experiment for several years in her algebra class. In some classes, students are exposed to a test every week. In other classes, students are tested three times during the quarter. Is there evidence that testing frequency is related to average achievement?

Quarter	Testing Frequency During Quarter	Overall Class Achievement on Final Exam
Fall 1991	3 times	85.5
Winter 1992	3 times	86.5
Spring 1992	3 times	88.9
Summer 1992	weekly	89.1
Fall 1992	3 times	87.2
Winter 1993	weekly	90.5
Spring 1993	weekly	89.8
Summer 1993	weekly	92.5
Fall 1994	weekly	89.3
Winter 1994	3 times	90.1

(2) Two classes of educational research were taught with two different methods of instruction, teacher guided (TG) and self paced (SP). Which had the better student achievement at the end of the quarter?

TG scores:	$95,93,87,88,82,92$
SP scores:	$78,89,83,90,78,86$

(3) A researcher wishes to know whether home study is related to general achievement amongst high school students. Students were surveyed, and all students who indicated that they routinely studied were coded 1, others were coded 0.

Student	High School GPA	Regularly Study at Home
Bill	3.33	1
Bob	1.79	0
Stewart	2.21	1
Linda	3.54	1
Lisa	2.89	0
Ann	2.54	1
Fred	2.66	0
Carter	1.10	0
Kathy	3.67	1

(4) Determine whether a statistical difference exists between men and women in weight:

Men: $\quad 156,158,175,203,252,195$
Women: $\quad 149,119,168,123,155,126$

11. Answers to Exercises

(1)

Table 1a: Descriptive Statistics and Correlations between Testing Frequency and Algebra Achievement

Variable	Correlations	
	Algebra Final	Testing Dummy
Algebra Final	---	
Testing Dummy	$.67^{*}$	---
Mean	88.94	0.50
SD	2.06	0.53

Note. $\mathrm{n}=10$; Testing Dummy $1=$ weekly tests, $0=$ three tests per semester.

* p < .05

Table 1b: Regression of Algebra Achievement on Testing Frequency

Variable	b	se	$95 \% \mathrm{Cl}$	t
Testing Dummy	2.60	1.03	$0.22,4.98$	2.52^{*}
Intercept	87.64	0.73	$85.96,89.32$	120.20^{*}

Note. $\mathrm{R}^{2}=.44$, adj. $\mathrm{R}^{2}=.37, \mathrm{~F}=6.36^{*}$, $\mathrm{df}=1,8 ; \mathrm{n}=10$;
Testing Dummy $1=$ weekly tests, $0=$ three tests per semester.
*p < . 05 .
Regression results show that testing frequency appears to be related, at the .05 level of significance, to algebra achievement. Students who tested weekly scored about 2.60 points higher in algebra, on average, than did students who were test three times during the semester.
(2)

Table 2a: Descriptive Statistics and Correlations between Type of Instruction and Educational Research Achievement

Variable	Correlations	
	Ed. Research	Instruction Scores
Ed. Research Scores	---	
Instruction Dummy	.52	---
Mean	86.75	0.50
SD	5.58	0.52

Note. $\mathrm{n}=10$; Instruction Dummy $1=$ teacher guided, $0=$ self-paced.

* p < .05

Table 2b: Regression of Type of Instruction on Educational Research Scores

Variable	b	se	$95 \% \mathrm{Cl}$	t
Testing Dummy	5.50	2.90	$-0.95,11.95$	1.90
Intercept	84.00	2.05	$79.44,88.56$	41.03^{*}

Note. $\mathrm{R}^{2}=.27$, adj. $\mathrm{R}^{2}=.19, \mathrm{~F}=3.61$, $\mathrm{df}=1,10 ; \mathrm{n}=12$;
Instruction Dummy $1=$ teacher guided, $0=$ self-paced.
*p < . 05 .

Regression results show that there is not a statistical difference in mean educational research scores between those in teacher guided instruction and those in self-paced instruction. Students appear to perform similarly whether in teacher guided or self-paced instruction.
(3)

Table 3a: Descriptive Statistics and Correlations between GPA and Home Study

Variable	Correlations	
	GPA	Home Study
GPA	---	
Home Study Dummy	.59	---
Mean	2.64	0.56
SD	0.84	0.53

Note. $\mathrm{n}=9$; Home Study Dummy 1 = regularly studies at home, $0=$ does not regularly study at home.

* $\mathrm{p}<.05$

Table 3b: Regression of GPA on Home Study

Variable	b	se	$95 \% \mathrm{Cl}$	t
Home Study Dummy	0.95	0.49	$-0.21,2.10$	1.94
Intercept	2.11	0.36	$1.25,2.97$	5.80^{*}

Note. $R^{2}=.35$, adj. $R^{2}=.26, ~ F=3.78, d f=1,7 ; n=9$;
Home Study Dummy 1 = regularly studies at home, $0=$ does not regularly study at home.
*p < . 05 .

Regression results show that there is not a statistical difference in mean GPA between students who regularly study at home and those who do not regularly study at home. GPA appears to be similar for both those who do and do not regularly study at home.
(4)

Table 4a: Descriptive Statistics and Correlations between Sex and Weight

Variable	Correlations	
	Sex Dummy	Weight
Sex Dummy	---	
GPA	$.68^{*}$	---
Mean	0.50	164.92
SD	0.52	38.03

Note. $\mathrm{n}=12$; Sex Dummy 1 = males, $0=$ females.

* $\mathrm{p}<.05$

Table 4b: Regression of Weight on Sex

Variable	b	se	$95 \% \mathrm{Cl}$	t
Sex Dummy	49.83	16.79	$12.42,87.25$	2.97^{*}
Intercept	140.00	11.87	$113.54,166.46$	11.79^{*}

Note. $R^{2}=.47$, adj. $R^{2}=.42, F=8.81^{*}, \mathrm{df}=1,10 ; \mathrm{n}=12$;
Sex Dummy 1 = males, $0=$ females.
*p < . 05 .

Regression results show that there is a statistically significant difference in mean weight between male and female participants-males, on average, weigh about 50 pounds more than females.

