Paired-samples t test
Also known as the Correlated-samples and Dependent-samples t-test

1. Purpose

The correlated t-test allows researchers to consider differences between two groups or sets of scores that are related. Under what conditions will one likely find correlated or dependent samples or groups?

(a) Condition 1: Before/After Studies; Multiple Measures on the Same Subject

These types of data occur most often with pretest-treatment-posttest experimental designs. These designs are used to determine whether some treatment will change posttest scores relative to pretest scores. The pretest and posttest scores are related, or correlated, because the scores are taken from the same individuals, i.e., each person is measured twice.

Examples

(a) A student takes the SAT, enrolls in an SAT enhancement class, and then retakes the SAT. Two scores from the same student exist.

(b) A teacher measured the reading performance of a third-grader, presented some treatment designed to increase reading performance, then re-measured the student's reading performance again (two scores from same individual).

(c) A PE teacher measures the vertical jumping ability of his class, provides his class a weight training program for one month, then re-measures vertical jumping ability of each student (two scores from same students).

(b) Condition 2: Naturally occurring pairs

Natural pairs, such as husbands and wives, twins, brothers, sisters, brothers and sisters, parents and their children, etc. With naturally occurring pairs, one would expect the pairs to hold similar feelings, beliefs, attitudes, etc., so their scores will generally be related.

Examples

(a) Determining whether husbands' attitudes toward politics are similar to their wives' attitudes. Since people tend to marry others like themselves, one would expect that most husbands and wives to hold similar political views.

(b) Determining whether boys' IQ differs from girls' IQ. Since brothers and sisters are similar genetically, one might anticipate the two to have similar IQs, that is, their IQs are likely to be related; therefore, brothers and sisters should be matched.

(c) Condition 3: Matched-pairs Design (Individually Matched Subjects)

Two sets or groups of scores are involved in the study, and sets are matched on some extraneous variable (or perhaps multiple variables) that is related to the dependent variable examined.

Example

A teacher is interested in determining whether "Hooked on Phonics" increases third-grade students' reading performance. Using two groups of students, group A (the experimental group) will use "Hook on Phonics" for one month, and group B (the control) will be exposed to the usual reading lessons during the month. The teacher knows that
IQ influences reading performance, so to control for the effects of IQ on the dependent variable (which is a posttest on reading performance), the researcher matches students in the two groups on their unique IQ levels in a fashion similar to the schematic below:

<table>
<thead>
<tr>
<th>IQ score</th>
<th>Group A (treatment)</th>
<th>Group B (control)</th>
<th>IQ score</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>Sue</td>
<td>John</td>
<td>133</td>
</tr>
<tr>
<td>126</td>
<td>Susan</td>
<td>Fred</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Bryan</td>
<td>Walt</td>
<td>86</td>
</tr>
<tr>
<td>72</td>
<td>Bill</td>
<td>Josh</td>
<td>72</td>
</tr>
</tbody>
</table>

In this scheme, students from both groups are matched according to their IQ levels. It is important to match on IQ individually student-by-student since one would expect students with higher IQs to perform better on a reading test than students with lower IQs.

2. Steps of Hypothesis Testing

Like with the two independent-samples t-test, the paired-samples t-test follows the same steps for hypothesis testing:

a. Define both H_0 and H_1
b. Set alpha (α, probability of a Type 1 Error)
c. Identify decision rule (either for α, test statistic, or confidence interval)
d. Calculate the test statistic (t ratio)
e. Find df (degrees of freedom), confidence intervals, and p-values
f. Present inferential and interpretation of results (in APA style)

3. Hypotheses

The hypothesis tested with the correlated t-test is the same as in the independent-samples t-test.

(a) Example 1

Is there a difference in mean systolic blood pressure before and after taking 50mg of Losartan?

Null

Written

The mean systolic blood pressure is the same before and after taking Losartan.

Symbolic

$H_0: \mu_1 = \mu_2 \text{ or } H_0: \mu_1 - \mu_2 = 0$

Alternative Non-directional

Written

The mean systolic blood pressure before and after taking Losartan differs.

Symbolic

$H_1: \mu_1 \neq \mu_2 \text{ or } H_1: \mu_1 - \mu_2 \neq 0$
(b) Example 2
Do identical twins, separated at birth and raised by different families, show similar IQ scores?

Null
Written
There is no difference in mean IQ scores between twins raised by different families.

Symbolic
$H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 - \mu_2 = 0$

Alternative Non-directional
Written
There is a difference in mean IQ scores between twins raised by different families.

Symbolic
$H_1: \mu_1 \neq \mu_2$ or $H_1: \mu_1 - \mu_2 \neq 0$

4. Decision Rules
Decision rules for the paired-samples t-test are the same as for the two-independent samples t test.

(a) p-values and α
One normally sets the probability of committing a Type 1 error, α, at .10, .05, or .01.

Decision rule for p-values (this decision rule holds for all statistical tests in which p-values are present) states

$$If \ p \leq \alpha \ reject \ H_0, \ otherwise \ fail \ to \ reject \ H_0$$

A p-value is calculated for the sampled data assuming the null hypothesis is true. A p-value for the paired-samples t-test holds the same interpretation as for the two-sample t test:

$p-value$: The probability of obtaining, randomly, two sample means from the population that differ by the amount observed, or more, assuming the null hypothesis is true (i.e., $H_0: \mu_1 - \mu_2 = 0$) given the size of the samples selected.

$p-value \ simplified$: The probability of randomly obtaining results this discrepant from the null hypothesis, or more discrepant, assuming the null hypothesis is true.

Assuming there is really no difference between means in the population (i.e., $\mu_1 = \mu_2$), the p-value indicates the probability of obtaining random sample means that will deviate this far or further from each other.

(b) Critical t values (t_{crit}) and calculated t
An equivalent hypothesis testing approach is to compare calculated t-values against critical t-values:

$$If \ -t \leq -t_{crit} \ or \ t \geq t_{crit} \ reject \ H_0, \ otherwise \ fail \ to \ reject \ H_0$$

This can be simplified by using absolute values as follows:

$$If \ |t| \geq |t_{crit}| \ reject \ H_0, \ otherwise \ fail \ to \ reject \ H_0$$
(c) Confidence Intervals

Since the null hypothesis usually specifies no difference between group means,

\[H_0: \mu_1 - \mu_2 = 0 \]

this indicates that the population difference between means should be 0.00 if the null is true.

One may calculate a confidence interval for the mean difference, and this interval provides a range of possible values for the population mean difference. Given this, one may specify the following decision rule:

If 0.00 lies within the CI for the mean difference, fail to reject \(H_0 \), otherwise reject \(H_0 \)

The logic here suggests that if 0.00 is within the confidence interval then 0.00 is a possible value for the population mean difference, and if 0.00 is a possible value for the population mean difference then the data collected are consistent with the null hypothesis of no difference, i.e., the data do not contradict \(H_0: \mu_1 - \mu_2 = 0.00 \). If, however, 0.00 is not within the confidence interval, this suggests 0.00 is not a reasonable value for the population mean difference so the collected data are not consistent with the null hypothesis therefore one may reject the null.

5. t-ratio, SE\(_d\), and df

(a) t-ratio Formula

Like the two-samples t-test, the paired-samples t-test forms a ratio of mean differences divided by the standard error of that difference:

\[t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{s_{\bar{X}_1 - \bar{X}_2}} \]

Since the difference between population means is expected to be 0.00, the component \(\mu_1 - \mu_2 \) drops from the equation leaving the reduced equation for the t-ratio:

\[t = \frac{\bar{X}_1 - \bar{X}_2}{s_{\bar{X}_1 - \bar{X}_2}} = \frac{\bar{X}_1 - \bar{X}_2}{SE_d} \]

(b) Standard Error of Difference, SE\(_d\)

The t-ratio formula presented above is the same for both the two-independent samples and the paired-samples t-test. The difference between the tests is how the standard error of the mean difference (SE\(_d\)) is calculated, and also how degrees of freedom (df) are calculated. For the correlated t-test the standard error of the mean difference is calculated as

\[SE_d = s_{\bar{X}_1 - \bar{X}_2} = \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right) - 2(r_{12}) \left(\frac{s_1}{\sqrt{n_1}}\right) \left(\frac{s_2}{\sqrt{n_2}}\right)} \]

The above SE\(_d\) formula contains a correlation component where \(r_{12} \) represents the Pearson product moment correlation between both sets of scores. The larger this correlation, the smaller will be the SE\(_d\). Smaller SE\(_d\) tend to produce larger calculated t-ratios in absolute value, so smaller SE\(_d\) result is greater power for the test. Thus, the above formula capitalizes on any dependence, or correlation, among the sets of scores.
In the independent-samples t-test one assumes that the two sets of data are not correlated, so the standard error loses the correlation term, \(r_{12} \), in the formula, i.e.:

\[
SE_d = \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right) - 2(r_{12}) \left(\frac{s_1}{\sqrt{n_1}}\right) \left(\frac{s_2}{\sqrt{n_2}}\right)} = \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right) - 2(0) \left(\frac{s_1}{\sqrt{n_1}}\right) \left(\frac{s_2}{\sqrt{n_2}}\right)}
\]

If there is no correlation, then the \(SE_d \) formula for the paired-samples t-test reduces to the \(SE_d \) formula given in the independent-samples t-test. In short, the primary difference between the independent-samples and paired-samples t-tests is the calculation of the standard error of the difference, \(SE_d \).

(c) Degrees of Freedom, df

The df for the correlated t-test is calculated as:

\[
df = n - 1
\]

where \(n \) represents the number of pairs across the two sets of scores.

6. Computational Formula for Paired-samples t-test

Calculation of the \(SE_d \) for the correlated-samples t-test requires finding the Pearson product moment correlation, \(r_{12} \), between the two sets of scores. While finding Pearson’s \(r \) is not difficult, especially with use of software, it does introduce one additional computational step.

An easier approach to calculating the paired-samples t-test can be found with this formula

\[
t = \frac{\bar{d} - \mu_d}{SE_d} = \frac{\bar{d}}{SE_d}
\]

where \(\bar{d} \) is the mean of the differences between pairs of scores

\[
\bar{d} = \frac{\sum d}{n}
\]

and \(SE_d \) is the standard error of the mean difference

\[
SE_d = \sqrt{\frac{s_d^2}{n}}
\]

where \(s_d^2 \) is the variance of the difference scores, and is calculated like a regular variance, i.e.,
\[s_d^2 = \frac{\sum (d - \bar{d})^2}{n - 1} \]

In short, the correlated-samples t-test may be viewed as the mean of the differences, \(\bar{d} \), divided by the standard error of the differences, \(SE_d \)

\[t = \frac{\bar{d}}{SE_d} \]

This computational approach for the t-test is illustrated below.

7. Confidence Intervals about the Mean Difference

For the independent-samples t-test the confidence interval is for the mean difference is

\[(1 - \alpha)CI = (\bar{X}_1 - \bar{X}_2) \pm (\text{critical t value})(\text{standard error of mean difference}) \]

and the same formula may be used to construct confidence intervals for the paired-samples t-test.

8. Example t-tests with SPSS and the Computational Formula

(a) Example 1

Is there a difference in mean systolic blood pressure before and after taking 50mg of Losartan? Raw data for a sample of eight participants is provided below.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Systolic Blood Pressure</th>
<th>Before Losartan</th>
<th>After Losartan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>145</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>133</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Peggy</td>
<td>175</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Bertha</td>
<td>139</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Dot</td>
<td>143</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Kenneth</td>
<td>132</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Scott</td>
<td>149</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Marshall</td>
<td>162</td>
<td>153</td>
<td></td>
</tr>
</tbody>
</table>
If calculating by hand, follow these steps:

(a) Determine **difference scores** for each set of matched scores:

<table>
<thead>
<tr>
<th>Participant</th>
<th>Systolic Blood Pressure Before Losartan</th>
<th>Systolic Blood Pressure After Losartan</th>
<th>Difference Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>145</td>
<td>133</td>
<td>12 i.e., $145 - 133 = 12$</td>
</tr>
<tr>
<td>John</td>
<td>133</td>
<td>119</td>
<td>14</td>
</tr>
<tr>
<td>Peggy</td>
<td>175</td>
<td>151</td>
<td>24</td>
</tr>
<tr>
<td>Bertha</td>
<td>139</td>
<td>133</td>
<td>6</td>
</tr>
<tr>
<td>Dot</td>
<td>143</td>
<td>146</td>
<td>-3</td>
</tr>
<tr>
<td>Kenneth</td>
<td>132</td>
<td>126</td>
<td>6</td>
</tr>
<tr>
<td>Scott</td>
<td>149</td>
<td>141</td>
<td>8</td>
</tr>
<tr>
<td>Marshall</td>
<td>162</td>
<td>153</td>
<td>9</td>
</tr>
</tbody>
</table>

Sum = 76

(b) Find the **mean of the difference scores**, \bar{d}

$$\bar{d} = \frac{\sum d}{n} = \frac{76}{8} = 9.5$$

(c) Find **variance of the difference scores**, s_d^2

$$s_d^2 = \frac{\sum (d - \bar{d})^2}{n - 1}$$

<table>
<thead>
<tr>
<th>Difference Score, d</th>
<th>\bar{d}</th>
<th>$d - \bar{d}$</th>
<th>$(d - \bar{d})^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>9.5</td>
<td>2.5</td>
<td>6.25</td>
</tr>
<tr>
<td>14</td>
<td>9.5</td>
<td>4.5</td>
<td>20.25</td>
</tr>
<tr>
<td>24</td>
<td>9.5</td>
<td>14.5</td>
<td>210.25</td>
</tr>
<tr>
<td>6</td>
<td>9.5</td>
<td>-3.5</td>
<td>12.25</td>
</tr>
<tr>
<td>-3</td>
<td>9.5</td>
<td>-12.5</td>
<td>156.25</td>
</tr>
<tr>
<td>6</td>
<td>9.5</td>
<td>-3.5</td>
<td>12.25</td>
</tr>
<tr>
<td>8</td>
<td>9.5</td>
<td>-1.5</td>
<td>2.25</td>
</tr>
<tr>
<td>9</td>
<td>9.5</td>
<td>-0.5</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Sum = $\sum (d - \bar{d})^2$ = 420.00

$n - 1 = 8 - 1 = 7$

$$s_d^2 = \frac{\sum (d - \bar{d})^2}{n - 1} = \frac{420}{7} = 60.00$$
(d) Find standard error of the difference scores, \(SE_d \)

\[
SE_d = \sqrt{\frac{s_d^2}{n}} = \sqrt{\frac{60.00}{8}} = \sqrt{7.50} = 2.739
\]

(e) Calculate the t-ratio

\[
t = \frac{\bar{d}}{SE_d} = \frac{9.50}{2.739} = 3.468
\]

(f) Find df and critical values for whichever significance level (\(\alpha \)) is specified if using t-values for hypothesis testing:

\[
df = n - 1 = 8 - 1 = 7
\]

- \(\alpha = .05 \); critical t = ± 2.36
- \(\alpha = .01 \); critical t = ± 3.50

(g) Apply decision rule

\[
If \ |t| \geq |t_{crit}| \ reject \ H_0, \ otherwise \ fail \ to \ reject \ H_0
\]

\[
If \ |3.468| \geq |2.36| \ reject \ H_0, \ otherwise \ fail \ to \ reject \ H_0
\]

Since the calculated t-value of 3.468 is greater than the critical t-value of 2.36 one would reject Ho and conclude that mean systolic blood pressure appears to differ before and after taking Losartan.

(h) Calculate confidence interval about mean difference

\[
(1 - \alpha)CI = (\bar{X}_1 - \bar{X}_2) \pm (\text{critical t value})(\text{standard error of mean difference})
\]

So for a 95% CI one would use the following numbers to construct the CI:

- \(\alpha = .05 \)
- \(\bar{X}_1 - \bar{X}_2 = \bar{d} = 9.50 \)
- \(\text{critical t value} = 2.36 \)
- \(\text{standard error of mean difference} = SE_d = 2.739 \)

\[
(.95)CI = (9.50) \pm (2.36)(2.739)
\]

Upper Limit = 9.50 + (2.36)(2.739) = 9.50 + 6.464 = 15.964
Lower Limit = 9.50 - (2.36)(2.739) = 9.50 - 6.464 = 3.036

The 99% CI, .99CI, would require changing the critical t value to 3.50, so the limits would be:

Upper Limit = 9.50 + (3.50)(2.739) = 9.50 + 9.587 = 19.087
Lower Limit = 9.50 - (3.50)(2.739) = 9.50 - 9.587 = -0.087
Interpretation of the 95% CI:

One may be 95% confident that the interval 3.036 to 15.964 includes the population mean difference of systolic blood pressure before and after taking the medication Losartan.

Since 0.00 does not appear within this interval, one would reject Ho since 0.00 is an unlikely value for the mean difference in blood pressure.

Results from SPSS are presented below.

Figure 1

SPSS Output for Paired-samples t-test of Blood Pressure by Losartan Usage

<table>
<thead>
<tr>
<th>Pair</th>
<th>Mean</th>
<th>N</th>
<th>Std Deviation</th>
<th>Std Error of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>blood_pressure_before</td>
<td>147.2500</td>
<td>8</td>
<td>14.72364</td>
<td>5.20550</td>
</tr>
<tr>
<td>blood_pressure_after</td>
<td>137.7500</td>
<td>8</td>
<td>12.08009</td>
<td>4.27066</td>
</tr>
</tbody>
</table>

Questions

(a) What does the middle table represent?

(b) How would one obtain the 99% CI with SPSS; does the 99% CI change the inference and interpretation of results?
Do identical twins, separated at birth and raised by different families, show similar IQ scores? Below are IQ scores for twins.

Table 4
IQ Scores by Twins

<table>
<thead>
<tr>
<th>Twin Pairs, Last Name</th>
<th>IQ Scores</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Twin A</td>
<td>Twin B</td>
</tr>
<tr>
<td>Johnson</td>
<td>103</td>
<td>107</td>
</tr>
<tr>
<td>Murphy</td>
<td>92</td>
<td>90</td>
</tr>
<tr>
<td>Baggett</td>
<td>108</td>
<td>105</td>
</tr>
<tr>
<td>Sykes</td>
<td>129</td>
<td>128</td>
</tr>
<tr>
<td>Coleman</td>
<td>114</td>
<td>112</td>
</tr>
<tr>
<td>McNeil</td>
<td>121</td>
<td>118</td>
</tr>
<tr>
<td>Frasier</td>
<td>86</td>
<td>90</td>
</tr>
</tbody>
</table>

If calculating by hand, follow these steps:

(a) Determine **difference scores** for each set of matched scores:

<table>
<thead>
<tr>
<th>Twin Pairs, Last Name</th>
<th>IQ Scores</th>
<th>Difference Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Twin A</td>
<td>Twin B</td>
</tr>
<tr>
<td>Johnson</td>
<td>103</td>
<td>107</td>
</tr>
<tr>
<td>Murphy</td>
<td>92</td>
<td>90</td>
</tr>
<tr>
<td>Baggett</td>
<td>108</td>
<td>105</td>
</tr>
<tr>
<td>Sykes</td>
<td>129</td>
<td>128</td>
</tr>
<tr>
<td>Coleman</td>
<td>114</td>
<td>112</td>
</tr>
<tr>
<td>McNeil</td>
<td>121</td>
<td>118</td>
</tr>
<tr>
<td>Frasier</td>
<td>86</td>
<td>90</td>
</tr>
</tbody>
</table>

i.e., 103 – 107 = -4

(b) Find the **mean of the difference scores**, \(\bar{d} \)

\[
\bar{d} = \frac{\sum d}{n} = \frac{3}{7} = 0.4286
\]

(c) Find **variance of the difference scores**, \(s_d^2 \)

\[
s_d^2 = \frac{\sum (d - \bar{d})^2}{n - 1}
\]
Table 6
Calculating Variance of Difference Scores

<table>
<thead>
<tr>
<th>Difference Score, (d)</th>
<th>(\bar{d})</th>
<th>(d - \bar{d})</th>
<th>((d - \bar{d})^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>0.4286</td>
<td>-4.4286</td>
<td>19.6125</td>
</tr>
<tr>
<td>2</td>
<td>0.4286</td>
<td>1.5714</td>
<td>2.469298</td>
</tr>
<tr>
<td>3</td>
<td>0.4286</td>
<td>2.5714</td>
<td>6.612098</td>
</tr>
<tr>
<td>1</td>
<td>0.4286</td>
<td>0.5714</td>
<td>0.326498</td>
</tr>
<tr>
<td>2</td>
<td>0.4286</td>
<td>1.5714</td>
<td>2.469298</td>
</tr>
<tr>
<td>3</td>
<td>0.4286</td>
<td>2.5714</td>
<td>6.612098</td>
</tr>
<tr>
<td>-4</td>
<td>0.4286</td>
<td>-4.4286</td>
<td>19.6125</td>
</tr>
</tbody>
</table>

Sum = \(\sum (d - \bar{d})^2\) = 57.7143

\(n - 1 = 7 - 1 = 6\)

\(s^2_d = \frac{\sum (d - \bar{d})^2}{n - 1} = \frac{57.7143}{6} = 9.6191\)

(d) Find standard error of the difference scores, \(SE_d\)

\(SE_d = \frac{s^2_d}{\sqrt{n}} = \frac{\sqrt{9.6191}}{\sqrt{7}} = \sqrt{1.3742} = 1.1723\)

(e) Calculate the t-ratio

\(t = \frac{\bar{d}}{SE_d} = \frac{0.4286}{1.1723} = 0.3656\)

(f) Find \(df\) and critical values for whichever significance level \((\alpha)\) is specified if using t-values for hypothesis testing:

\(df = n - 1 = 7 - 1 = 6\)

\(\alpha = .05;\ \text{critical}\ t = \pm 2.45\)

\(\alpha = .01;\ \text{critical}\ t = \pm 3.71\)

(g) Apply decision rule

\(|t| \geq |t_{\text{crit}}|\ \text{reject}\ H_0,\ otherwise\ fail\ to\ reject\ H_0\)

\(|0.3656| \leq |2.45|\ \text{reject}\ H_0,\ otherwise\ fail\ to\ reject\ H_0\)

Since the calculated t-value of 0.3656 is less than the critical t-value of 2.45 one would fail to reject \(H_0\) and conclude that mean IQ between twins is similar.

(h) Calculate confidence interval about mean difference

\((1 - \alpha)CI = (\bar{X}_1 - \bar{X}_2) \pm (\text{critical t value})(\text{standard error of mean difference})\)

So for a 95\% CI one would use the following numbers to construct the CI:
• \(\alpha = .05 \)
• \(\bar{X}_1 - \bar{X}_2 = \bar{d} = 0.4286 \)
• critical t value = 2.45
• standard error of mean difference = \(SE_d = 1.1723 \)

\((.95)CI = (0.4286) \pm (2.45)(1.1723)\)

Upper Limit = 0.4286 + (2.45)(1.1723) = 0.4286 + 2.8721 = 3.30
Lower Limit = 0.4286 - (2.45)(1.1723) = 0.4286 - 2.8721 = -2.44

The 99% CI, \(.99CI \), would require changing the critical t value to 3.71, so the limits would be:

Upper Limit = 0.4286 + (3.71)(1.1723) = 0.4286 + 4.3492 = 4.778
Lower Limit = 0.4286 - (3.71)(1.1723) = 0.4286 - 4.3492 = -3.92

Interpretation of the 95% CI:

One may be 95% confident that the interval -2.44 to 3.30 includes the population mean difference of IQ scores between twins.

Since 0.00 appears within this interval, one would fail to reject Ho since 0.00 is one likely value for the mean difference in IQ scores for twins.

Results from SPSS are presented below.

Figure 2
SPSS Output for Paired-samples t-test of IQ Scores by Twins

<table>
<thead>
<tr>
<th>Paired Samples Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Pair 1 Twin_A</td>
</tr>
<tr>
<td>Pair 1 Twin_B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paired Samples Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>Pair 1 Twin_A & Twin_B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paired Samples Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paired Differences</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Pair 1 Twin_A - Twin_B</td>
</tr>
</tbody>
</table>

12
9. APA Style Results Presentation

It is possible to report paired-samples t-test results in either textual or tabular format, but the tabular format is preferred. Both options are provided below.

(a) Tabular Format

Two examples are provided:
- Table 7 shows a t-test for blood pressure data, and
- Table 8 provides results from three t-tests reported simultaneously in one table.

As with the two-independent samples t-test, the written presentation following a table should include first inferential information (whether Ho was rejected) and this should be followed with interpretational information (what the results mean in simple language).

Table 7 demonstrates APA style for the t-test with blood pressure data.

Table 7

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pretest M</th>
<th>SD</th>
<th>Posttest M</th>
<th>SD</th>
<th>n</th>
<th>95% CI for Mean Difference</th>
<th>r</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Losartan</td>
<td>147.25</td>
<td>14.72</td>
<td>137.75</td>
<td>12.08</td>
<td>8</td>
<td>3.02, 15.98</td>
<td>.85*</td>
<td>3.47*</td>
<td>7</td>
</tr>
</tbody>
</table>

* p < .05.

Results show a statistically significant difference in mean systolic blood pressure before and after Losartan usage. Blood pressure appears to drop an average of about 9.5 points following the usage of Losartan.

Table 8 shows how to combine results from several paired-samples t-tests performed for the same groups of participants.

Table 8

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pretest M</th>
<th>SD</th>
<th>Posttest M</th>
<th>SD</th>
<th>n</th>
<th>95% CI for Mean Difference</th>
<th>r</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety</td>
<td>5.80</td>
<td>1.89</td>
<td>6.12</td>
<td>1.23</td>
<td>45</td>
<td>-0.48, -0.16</td>
<td>.75*</td>
<td>-2.59*</td>
<td>44</td>
</tr>
<tr>
<td>Efficacy</td>
<td>5.24</td>
<td>1.56</td>
<td>5.31</td>
<td>1.97</td>
<td>44</td>
<td>-0.16, 0.02</td>
<td>.86*</td>
<td>1.98</td>
<td>43</td>
</tr>
<tr>
<td>Persistence</td>
<td>6.13</td>
<td>1.89</td>
<td>5.56</td>
<td>1.21</td>
<td>45</td>
<td>0.55, 0.83</td>
<td>.90*</td>
<td>4.89*</td>
<td>44</td>
</tr>
</tbody>
</table>

* p < .05.

As displayed in Table 8, there are statistically significant differences, at the .05 significance level, in pretest to posttest scores for anxiety and persistence, but not for efficacy. Results show that anxiety increased, persistence decreased, and efficacy remained unchanged after exposure to the treatment.

(b) Textual Format

Results of the paired-samples t-test show that mean systolic blood pressure differs before taking Losartan (M = 147.25, SD = 14.72) and after taking Losartan (M = 137.75, SD = 12.08) at the .05 level of significance (t = 3.47, df = 7, n = 8, p < .05, 95% CI for mean difference 3.02 to 15.98, r = .85). On average systolic blood was about 9.5 points lower after taking Losartan.
10. Matched individually vs. Sub-group Matching

Often data suitable for a paired-samples t-test form pairs naturally such as with before-after type studies (e.g., weight from same individuals before and after diet) or studies of naturally occurring pairs (e.g., attitudinal differences of husbands and wives; comparison of scores between siblings).

Sometimes data may be paired through use of matched pairings such as with case-control studies (popular in the medical field). Matched data can pose problems for the paired-samples t-test if subgroups rather than individuals are matched. The two types of matching are illustrated in Tables 9 and 10.

Note that when subgroups are matched, often there can be unequal numbers per subgroup for a given match (e.g., 4 individuals with IQ 110+ for Group A vs. 2 individuals for Group B), whereas uniquely matched individuals will form 1-to-1 pairs. The latter type, illustrated in Table 9, are suitable for paired-samples t-test. If one has the former type, illustrated in Table 10, then a more suitable analysis may be two-way ANOVA with the matching variable treated as a blocking factor.

Table 9
Individuals Matched Unique on IQ Scores

<table>
<thead>
<tr>
<th>IQ score</th>
<th>Group A (treatment)</th>
<th>Group B (control)</th>
<th>IQ score</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>Sue</td>
<td>John</td>
<td>133</td>
</tr>
<tr>
<td>126</td>
<td>Susan</td>
<td>Fred</td>
<td>126</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>86</td>
<td>Bryan</td>
<td>Walt</td>
<td>86</td>
</tr>
<tr>
<td>72</td>
<td>Bill</td>
<td>Josh</td>
<td>72</td>
</tr>
</tbody>
</table>

Table 10
Subgroups of Individuals Matched on IQ Scores

<table>
<thead>
<tr>
<th>IQ score</th>
<th>Group A (treatment)</th>
<th>Group B (control)</th>
<th>IQ score</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (110+)</td>
<td>Beth, Sue, John, Greg</td>
<td>John and Ann</td>
<td>High (110+)</td>
</tr>
<tr>
<td>Middle (90-110)</td>
<td>Bob and Susan</td>
<td>Fred, Bill, and Erin</td>
<td>Middle (90-110)</td>
</tr>
<tr>
<td>Low (<90)</td>
<td>Bryan and Bill</td>
<td>Josh, Walt, and Jon</td>
<td>Low (<90)</td>
</tr>
</tbody>
</table>

Why is the paired-samples t-test ill-suited for analysis of matches like those found in Table 10? It is possible to randomly form pairs within matched subgroups so t-test results could vary according to which pairs were matched – change pairings and the t-test results could change.

11. Topics not Covered

(a) Directional tests

Directional (group 1 has higher mean than group 2)

The experimental group will show a higher level of achievement.

\[H_0: \mu_1 \leq \mu_2 \]

\[H_1: \mu_1 > \mu_2 \]

or
\[H_0: \mu_1 - \mu_2 \leq 0.00 \]
\[H_1: \mu_1 - \mu_2 > 0.00 \]

Directional (group 2 has higher mean than group 1)

The experimental group will show a lower level of achievement.

\[H_0: \mu_1 \geq \mu_2 \]
\[H_1: \mu_1 < \mu_2 \]

or

\[H_0: \mu_1 - \mu_2 \geq 0.00 \]
\[H_1: \mu_1 - \mu_2 < 0.00 \]

These are not covered because I think non-directional is better since it less likely one will “cheat” to obtain statistical significance (i.e., adopts in a post-hoc fashion directional tests since they offer more power compared with non-directional tests). Also statistical software tends to provide p-values only for non-directional tests.

(b) Effect Size d

The effect size \(d \) represents the mean difference divided by the common or pooled standard deviation:

\[
d = \frac{\bar{X}_1 - \bar{X}_2}{s}
\]

Like a Z score, this value indicates the size of the mean difference in standard deviation units. The \(d \) formula may appear to be the same as the t formula, but note the different denominator. In the \(d \) formula the denominator is \(s \), the sample standard deviation, and in the t formula the denominator is \(s_{\bar{X}} \), standard error of the mean.

(c) Sample Size

One may calculate required sample size for a two-sample t test to meet specifications for Type 1 error rate (\(\alpha \)), power (1-\(\beta \)), and effect size (\(d \)). This requires use of tabled values or software.

12. **Exercises**

See the course web page and the course text to find exercises for correlated-samples t test.