
Notes 6: Correlation 

1. Correlation 

 

• correlation: this term usually refers to the degree of relationship or association between two quantitative 

variables, such as IQ and GPA, or GPA and SAT, or HEIGHT and WEIGHT, etc. 

• positive relationship (↑↑): two variables vary in the same direction, i.e., they covary together; as one variable 

increases, the other variable also increases; e.g., higher GPAs correspond to higher SATs, and lower GPAs 

correspond to lower SATs;  

• negative (inverse) relationship (↑↓): as one variables increases, the other decreases; e.g., higher GPAs 

correspond with lower SATs 

 

(What type of relationship is it if both variables covary like ↓↓?) 

 

• scatter plots, scatter grams: graphs that illustrate the relationship between two variables; each point of the 

scatter represents scores on two variables for one case or individual 

 

The figure below shows a positive and relatively strong correlation between SAT and IQ. Three points are 

identified in Figure 1 with arrows. One individual scored 674 on SAT and 84 on IQ, one scored 183 on SAT and 58 

on IQ, and another scored 342 on SAT and 113 on IQ. As these three points illustrate, each dot represents the 

combination of two variables for one individual or case. 

 

Figure 1: Correlation between SAT and IQ 

 
 

***Begin Stata commands, Ignore these marks*** 

.corr2data SAT IQ, n(500) means(500 100) corr(1.00 .6321 1.00) sds(100 15) cstorage(lower) 

.replace SAT = round(SAT) 

.replace IQ = round(IQ) 

.twoway (scatter SAT IQ, msymbol(circle)), ytitle(Mathematics SAT Scores (M = 500, SD = 100)) xtitle(IQ 

Scores (M = 100, SD = 15)) legend(symplacement(north)) scheme(s2mono) text(342 113 "  SAT = 342, IQ = 

113", placement(e))  text(674 84 "SAT = 674, IQ = 84  ", placement(w)) text(183 58 "  SAT = 183, IQ = 58", 

placement(e)) 

***End Stata commands, Ignore these marks*** 
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Figure 2: Three Scatterplots 

 

(a) (b) (c)  
 

In the figure above are three scatterplots: (a) shows a positive relationship, figure (b) shows a negative relationship, 

and figure (c) depicts a curvilinear or non-linear relationship. 

 

• linear representation: can a single, straight line be drawn for figure (a) that best represents the relationship 

between the two variables? what about (b), (c)? (draw the lines on the scatterplots) 

 

In many cases the nature of relationship between two variables can be represented by a line that fits among the 

scatter. Examples are presented in the figure below.  

 

Figure 3: Scatterplots with lines representing the general trend of the relationship 

 

 
 

2. Properties of Pearson's r 

 

• linear: r can only measure linear relationships; note that it is possible for curvilinear relationships to exist, e.g., 

anxiety and performance 

• range of values: r is bounded by +1.00 and -1.00; a perfect positive relationship is represented by 1.00; a perfect 

negative relationship is represented by -1.00; the closer r is to 0.00, the weaker the linear relationship between 

the two variables (see figure below for examples of various correlation values) 

• r = 0.00: zero correlation indicates the weakest possible relationship, that is, no linear relationship between two 

variables; an r of 0.00 does not rule out all possible relationships since there is the possibility of a non-linear or 

curvilinear relationship. 

• no variance: if either variable has zero variance (s
2
 = 0.00), then there is no relationship between the two 

variables and Pearson's r is undefined (but r = 0.00); if a variable has a variance of 0.00, then it does not vary, 

and is therefore not a variable—it is a constant 

• change of scale: r will remain the same between two variables even if the scale of one (or both) of the variables 

is changed; e.g., converting X to z or T does not affect the value of r 

 

 

 

 

 

 

(a) (b) (c)
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Figure 4: Scatterplots for Various Degrees of Correlation 
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Change of Scale 

 

As noted above, the Pearson correlation coefficient is scale independent for linear transformations of a variable. 

This means correlation variable A and B will produce the same correlation as A and (B / X), A and (B × X), or any 

other linear transformation of B.  

 

Table 1: Examples of Correlations between A and variations of B 

Variable A Variable B Variable B × 10 Variable B / 3 Log10(Variable B) 

1 2 20 0.6666 0.30103 

2 3 30 1.0000 0.47712 

3 5 50 1.6666 0.69897 

4 6 60 2.0000 0.77815 

5 7 70 2.3333 0.84509 

6 4 40 1.3333 0.60206 

7 9 90 3.0000 0.95424 

 

The logarithm to base 10 is a non-linear transformation, so it will change the correlation between A and B.  

 

(Side Note: The Log10 transformation provides a power value that is used to find B. For example, Log10(2) 

= 0.30103, so if 10 is raised to this value it will produce = 10^0.30103 ≈ 2. ) 

 

The following correlation values are produced for each variable combination: 

 

A and B:   r = .80023 

A and (B × 10):  r = .80023 

A and (B / 3):   r = .80023 

A and Log(B):   r ≠ .80023 since Log does not produce a linear transformation.  

 

3. Factors That May Alter Pearson’s r  

 

The following may inflate r, deflate r, change the sign of r, or have no effect: 

  

• variability or restriction of range (SAT → GPA; SAT restricted) 

• extreme scores  

• combined data (i.e., grouping data that should not be grouped) 

 

Examples for each are provided below.  

 

(a) Range Restriction 

 

Range restriction does not always affect relationships between variables or correlation values, but sometimes range 

restriction can affect relationship estimates. For example: Universities frequently make use standardized tests in an 

effort to screen applicants. Below are descriptive statistics for GRE mathematics scores and first year graduate GPA 

from 500 students. Note from the statistical output that the correlation is .59.  
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. correlate GRE GPA, means 

(obs=500) 

    Variable |         Mean    Std. Dev.          Min          Max 

-------------+---------------------------------------------------- 

         GRE |          500          100     183.0000     800.0000 

         GPA |     3.000795     .8455727     .2300000            4 

 

             |      GRE      GPA 

-------------+------------------ 

         GRE |   1.0000 

         GPA |   0.5932   1.0000 

 

As the figure below shows, there is a positive relation between GRE and GPA. Note the ceiling effect of GPA with 

a  number of students earning 4.00 during their first year.  

 

Figure 5: Scatterplot for GRE and GPA 

 
 

What would happen if students with GRE mathematics scores of only 450 or better are admitted? How might that 

change the scatterplot and correlation? These data used to generate descriptive statistics and scatterplot above are 

used again, below, but this time restricting observations to only students with a score of 450 or better on GRE 

mathematics sub-section.  

 

As results presented in the descriptive statistics and scatterplot show, the correlation between GRE and GPA is 

reduced as a result of the range restriction placed on GPA, from .59 to .41. Range restriction in a situation like this 

falsely implies that GRE scores provide less predictive power than is actually the case.  
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. correlate GRE GPA if GRE>=450, means 

    Variable |         Mean    Std. Dev.          Min          Max 

-------------+---------------------------------------------------- 

         GRE |     549.8239     72.44123     450.0053     818.9229 

         GPA |     3.277684     .6831325      .564881            4 

 

             |      GRE      GPA 

-------------+------------------ 

         GRE |   1.0000 

         GPA |   0.4122   1.0000 

 

Figure 6: Scatterplot for GRE and GPA with only GRE scores 450 or better 

 
 

(b) Extreme Scores 

 

Example 1: SAT and Height 

 

Extreme scores often have some effect on relationship estimates Here’s one example: Normally one would think 

that there should be no relationship between a male’s height and his SAT verbal score. However, the data below 

from 25 men show a moderate correlation of r = .31 height, measured in feet, and SAT verbal scores. How can this 

be? The scatterplot below provides the answer. Note in figure the extreme score, the outlier, showing one individual 

with a height of over 9 feet. This is a data entry error.  

 
. correlate SAT Height, means 

    Variable |         Mean    Std. Dev.          Min          Max 

-------------+---------------------------------------------------- 

         SAT |          500          100     311.5515     670.9754 

      Height |     5.988138     .8350335     5.026478          9.2 

 

             |      SAT   Height 

-------------+------------------ 

         SAT |   1.0000 

      Height |   0.3138   1.0000 
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Figure 7: Correlation between Height and SAT verbal scores (note extreme score, outlier to right of 

scatterplot) 

 
 

Removing the data entry error (9+ foot tall man) provides a correction to the correlation estimate, as the correlation 

statistic below reveals. The correlation drops from an unlikely .31 to one closer to .00 at .05. 

 
. correlate SAT Height if Height<8, means 

    Variable |         Mean    Std. Dev.          Min          Max 

-------------+---------------------------------------------------- 

         SAT |      492.876     95.45074     311.5515     629.8821 

      Height |     5.854311     .5102792     5.026478     6.934643 

 

             |      SAT   Height 

-------------+------------------ 

         SAT |   1.0000 

      Height |   0.0508   1.0000 

 

 

Example 2: Sex Gap in Mathematics Performance 

 

The Program for International Student Assessment (PISA) is an assessment in reading, science, and mathematics 

administered triennially to students in multiple countries. PISA is designed to enable cross-country comparisons.   

 

Of interest to some researchers is the gap, or achievement difference, in mean mathematics scores between females 

and males. On average males tend to score higher in mathematics, and this pattern exists across most countries with 

one exception. One question is whether the size of this gap remains constant over time or varies over time for each 

country. Below is a scatter plot showing the mathematics gap between males and females for two testing years, 

2003 and 2006.  

 

Iceland’s gap is curious because females scored higher in mathematics than males, on average, so Iceland produced 

a negative gap for both 2003 and 2006 while other countries produced a positive gap in both years. Including 

Iceland in the calculation of the scatterplot suggests a positive association between gap scores – the larger the gap 

in 2003, the larger the gap in 2006 on average. However, removing Iceland’s outlying gap reveals that there is no 

association between gap scores – the size of the gap in 2003 does not predict the size of the mathematics difference 

between males and females in 2006.  
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Figure 8: “A scatter plot of 2006 gaps vs. 2003 gaps. Each point represents the gaps obtained by a single 

country in successive PISA years. Except for the anomalous Iceland, there is no relation, whatsoever, 

between gaps observed in different years (r = 0.0006).”  Scatter plot and Figure description quoted from 

http://www.lagriffedulion.f2s.com/math2.htm   

 

 

 (c) Combined Data 

 

Combining Group Data May Not Affect Estimates 

 

Often when one combines data from different groups the results are similar as the example below illustrates. 

 

For instructors in the College of Education at GSU, the correlations between Overall Rating of the Instructor (1 = 

Poor to 5 = Excellent) and Amount of Knowledge Gained (1 = Little to None to 5 = Large Amount) is .94 for 

female and .96 for male instructors. Given the similarity of the scatter plot and correlations, instructor sex can be 

ignored in this analysis.  

 

Figure 9: Correlation between Overall Rating of Instructor and Amount of Knowledge Gained in Course 

 

r = .94 for Female Instructors

r = .96 for Male Instructors
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Combined Group Data May Affect Estimates 

 

Example 1: Democracy and Income (by Muslim vs. others) 

 

Sometimes, but not always, combined data can produce relationship estimates that are incorrect. Below is a scatter 

plot that shows the association between country income (GDP 1971) and democracy scores (1972 to 2005). Three 

groups are plotted, Muslim countries, Communist countries, and others. If this grouping were ignored, the 

correlation would be weak. However, when the groupings are considered, one can see two pronounced associations 

are revealed. For Muslim and communist counties, there is little association between income and democracy. For 

other countries, there is a strong positive association (it appears to be negative in the scatterplot, but democracy is 

reverse scored so the association is actually positive).  

  

Figure 10: Average Democracy Score (1972 to 2005) and Country Income (1971), Source:  

http://filipspagnoli.wordpress.com/stats-on-human-rights/statistics-on-gross-domestic-product-correlations/ 

 
 

Example 2: Class Size and Mean Grade Discrepancy 

 

Students in a number of College of Education classes at GSU were asked to complete a student ratings of 

instruction questionnaire. Two questions about grades were asked, and both are listed below: 

 

 
 

These grades were converted to a 4.0 scale, and then a grade discrepancy was calculated: 

 

�����	���	
���	��	��������� � �����	�������� � �����	�	��������� 
 

Thus a Grade Discrepancy of -1 suggests students believe they deserve one letter grader higher than they will be 

assigned; a Grade Discrepancy of -.5 suggest a deserved grade half a letter grade lower than will be assigned; a 

Grade Discrepancy of 0.0 indicates a deserved grade that is equal to the assigned grade. 

 

http://filipspagnoli.wordpress.com/stats-on-human-rights/statistics-on-gross-domestic-product-correlations/
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Below is the scatter plot for all classes sampled. Note there appears to be no relation between Grade Discrepancy 

and Class Size since r = -.01.  

 

Figure 11: Scatter plot of Grade Discrepancy and Class Size  

 
 

A curious feature of these data results when separate scatter plots are developed based upon the class instructor’s 

sex. See the figure below for Grade Discrepancy by Class Size scatter plots for female and male instructors  

separately.  

 

As the figure below shows, the relationship between Grade Discrepancy and Class Size demonstrates completely 

reversed associations depending upon whether the instructor is female or male. For female instructors larger class 

sizes are associated with a less grade discrepancy – as class size increases the grade discrepancy moves from -1 to 

about 0.00 (r = .30). For male instructors the relationship is reversed: larger class sizes are associated with larger 

negative discrepancies – as class size increases the grade discrepancy moves from about 0.0 to about -1.0.  
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Figure 12: Scatter plot of Grade Discrepancy and Class Size  

 
 

(d) Moral of the Story: Visually Inspect Your Data 

 

One should always visually inspect data to ensure a basic understanding of the nature of those data. Without visual 

inspection, one may mistakenly interpret and present results that are in error. This recommendation – to visually 

inspect one’s data – holds for all types of data; it applies to correlations and scatter plots, and also to any type of 

data collected and any relevant graphical display. Although not a graphical display, a frequency distribution is an 

efficient means of quickly spotting data entry errors, for example.  

 

As a final example of the importance of visual inspection, consider Anscombe's (1973) quartet (source: 

http://en.wikipedia.org/wiki/Anscombe's_quartet ). He provided four data sets which are listed below. 

 

Table 2: Anscombe’s Quartet, Raw Scores and Descriptive Statistics  

 Set A  Set B  Set C  Set D 

 10 8.04  10 9.14  10 7.46  8 6.58 

 8 6.95  8 8.14  8 6.77  8 5.76 

 13 7.58  13 8.74  13 12.74  8 7.71 

 9 8.81  9 8.77  9 7.11  8 8.84 

 11 8.33  11 9.26  11 7.81  8 8.47 

 14 9.96  14 8.1  14 8.84  8 7.04 

 6 7.24  6 6.13  6 6.08  8 5.25 

 4 4.26  4 3.1  4 5.39  19 12.5 

 12 10.84  12 9.13  12 8.15  8 5.56 

 7 4.82  7 7.26  7 6.42  8 7.91 

 5 5.68  5 4.74  5 5.73  8 6.89 

Mean = 9.00 7.50  9.00 7.50  9.00 7.50  9.00 7.50 

SD = 3.32 2.03  3.32 2.03  3.32 2.03  3.32 2.03 

r = .816   .816   .816   .816  

 

r = .30 r = -.41
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Note that each set in Anscombe’s quartet has the same M (9.00 and 7.50), SD (3.32 and 2.03), and correlation 

coefficient value (r = .816). Without visual aids to help examine these data one may be tempted to claim these data 

demonstrate similar relationships. Below, however, are the scatterplots to show the differences among the four sets 

of data.  

 

Figure 11: Scatter plots of Anscombe’s Quartet  

 
****begin Stata commands**** 

. twoway (scatter a1 a2) (lfit a1 a2) , title(Set A) legend(off)  name(a) 

. twoway (scatter b1 b2) (lfit b1 b2) , title(Set B) legend(off)  name(b) 

. twoway (scatter c1 c2) (lfit c1 c2) , title(Set C) legend(off)  name(c) 

. twoway (scatter d1 d2) (lfit d1 d2) , title(Set D) legend(off)  name(d) 

. graph combine a b c d 

****end Stata commands**** 

 

4. Correlation and Causation 

 

A correlation between variables does not imply the existence of causation, i.e., X → Y or Y → X. A strong 

correlation does not imply causation (e.g., r = .98; fire trucks and damage in urban areas), neither does a weak 

correlation imply the lack of causation (e.g., r = .04). Causation can only be established via experimental research 

and replications. Correlational research (i.e., non-experimental research) cannot be used to establish the existence 

of causal relationships, although correlational research can provide evidence that a causal relation exists.  

 

5. Pearson's r Formulas and Calculation Examples  

 

Pearson r Formula 

 

Pearson's r, or the Product Moment Coefficient of Correlation, is a measure of the degree of linear relationship or 

association between two (usually quantitative) variables; the population correlation is denoted as ρ (Greek rho), and 

r refers to correlation obtained from a sample. 
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Below are three formulas for calculating Pearson’s r. 

 

Formula A: r = 
1−

∑
n

ZZ yx
   

 

where n - 1 is the sample size minus 1, zx are the z scores on variable X, zy are the z scores on variable Y, and r is 

the Pearson's correlation coefficient: 

Formula B: r = 
sxy

sxsy
 

 

where sx is the standard deviation of variable X, sy is the standard deviation of variable y, and sxy is the covariance 

of variables X and Y; sxy is computed as: 

 

sxy =
1

))((

−
−−∑

n

YYXX ii
=

1

))((

−
−∑

n

YXnYX ii
 

 

Covariance is a measure of the degree to which two variables share common variance and vary together or change 

together (i.e., variables tend to move together).  

 

Formula C:  r =
])(][)([

))((

2222

∑∑∑∑

∑∑∑
−−

−

YYnXXn

YXXYn
 

 

 

Calculation of Pearson r 

 

What is the correlation between IQ and SAT scores? The data are provided below. 

 

Table 3: Fictional SAT and IQ Scores 

Student SAT IQ 

Bill 1010 100 

Beth 1085 101 

Bryan 1080 102 

Bertha  990  95 

Barry  970  87 

Betty 1100 120 

Bret  990  99 

 

For formula A,  

Formula A: r = 
1−

∑
n

ZZ yx
   

first calculate Z scores for both variables (see two tables below). Recall that the formula for a Z score is  

Z = (X – M)/SD  
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Table 4: Z Scores for IQ 

Student IQ ( )IQ - IQ  ( )2IQ - IQ  ZIQ 

Bill 100 -0.571 0.326 -0.057 

Beth 101 0.429 0.184 0.043 

Bryan 102 1.429 2.042 0.143 

Bertha 95 -5.571 31.036 -0.558 

Barry 87 -13.571 184.172 -1.360 

Betty 120 19.429 377.486 1.947 

Bret 99 -1.571 2.468 -0.157 

IQ  = 100.571;  SS = 597.714; 2
IQs  = 99.619;  sIQ = 9.981 

Table 5: Z Scores for SAT 

Student SAT ( )SAT - SAT  ( )2SAT - SAT  ZSAT 

Bill 1010 -22.143  490.312 -0.409 

Beth 1085  52.857 2793.862  0.976 

Bryan 1080  47.857 2290.292  0.884 

Bertha  990 -42.143 1776.032 -0.778 

Barry  970 -62.143 3861.752 -1.148 

Betty 1100  67.857 4604.572  1.253 

Bret  990 -42.143 1776.032 -0.778 

SAT  = 1032.143;  SS = 17592.854; 2
SATs  = 2932.142;  sSAT = 54.149 

Next, find the sum of the product of the Z scores.  

Table 6: Product of Z Scores  

Student SAT IQ ZSAT ZIQ SATIQ ZZ ×  

Bill 1010 100 -0.409 -0.057 0.023 

Beth 1085 101  0.976  0.043 0.042 

Bryan 1080 102  0.884  0.143 0.126 

Bertha  990  95 -0.778 -0.558 0.434 

Barry  970  87 -1.148 -1.360 1.561 

Betty 1100 120  1.253  1.947 2.440 

Bret  990  99 -0.778 -0.157 0.122 

 

∑ SATIQZZ = 4.748 

 

Formula A: r = 
1−

∑
n

ZZ SATIQ
=

6

748.4
= .791 
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For formula B, one must first calculate the covariance, sxy, between both variables.  

 

Formula B: r =
YX

XY

ss

s
, where sxy =

1

))((

−
−−∑

n

YYXX ii
=

1

))((

−
−∑

n

YXnYX ii
 

Table 7: Two Variables Multiplied   

Student SAT IQ IQSAT ×  

Bill 1010 100 101000 

Beth 1085 101 109585 

Bryan 1080 102 110160 

Bertha  990  95 94050 

Barry  970  87 84390 

Betty 1100 120 132000 

Bret  990  99 98010 

 

IQ  =   100.571; SSIQ  =   597.714;   s
2
 =   99.619;  sIQ  =  9.981 

SAT  = 1032.143;  SSSAT = 17592.854;,  s
2
 = 2932.142; sSAT = 54.149 

 

∑ × IQSAT =  729195 

 

sxy = sIQ SAT =
SATIQ

IQSAT

ss

s
=

1

))((

−
−−∑

n

YYXX ii
=

1

))((

−
−∑

n

YXnYX ii
=

17

)143.1032571.1007(729195

−
××−

 

 

      =
6

)576.726625(729195 −
=

6

424.2569
= 428.237 

 

Formula B: r =
YX

XY

ss

s
=

SATIQ

IQSAT

ss

s
= 

149.54981.9

237.428

×
 = 

461.540

237.428
= 0.792 

 

Formula C was used before the computers gained in popularity due to its ease of calculation (despite that this 

formula looks more complex than the other two!). 

 

Formula C: r =
])(][)([

))((

2222

∑∑∑∑

∑∑∑
−−

−

YYnXXn

YXXYn
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Table 8: Formula C Begins   

Student SAT IQ IQxSAT SAT
2
 IQ

2
 

Bill 1010 100 101000 1020100 10000 

Beth 1085 101 109585 1177225 10201 

Bryan 1080 102 110160 1166400 10404 

Bertha  990  95 94050 980100 9025 

Barry  970  87 84390 940900 7569 

Betty 1100 120 132000 1210000 14400 

Bret  990  99 98010 980100 9801 

 

∑SAT = 7,225; ∑(SAT
2
) = 7,474,825; ∑IQ = 704; ∑(IQ

2
) = 71,400; and ∑(SAT*IQ) = 729,195 

   

Formula C: r =
])(][)([

))((

2222

∑∑∑∑

∑∑∑
−−

−

YYnXXn

YXXYn
=

( )
])(][)([

))((

2222

∑∑∑∑

∑∑∑
−−

−×

SATSATnIQIQn

SATIQSATIQn
 

 

  =
]495616)714007][(52200625)74748257[(

)7047225()7291957(

−×−×
×−×

 

 

  = 
4184123150

50864005104365

×
−

=
515259600

17965
=

330.22699

17965
= 0.791 

 

As the above results show, all three formulas produce the save value for r within rounding error.  

 

 

6. Statistical Inference with the Correlation Coefficient r  

 

(a) Calculating a t-ratio for r 

 

When testing a correlation coefficient, one wishes to know whether the correlation coefficient is statistically 

different from a value of 0.00 (i.e., is calculated correlation statistically different from no linear relationship, r = 

0.00). The formula for obtaining a calculated t-value for the correlation is: 

  

t =
21

2

r

nr

−

−
 

 

and the df (or υ) are 

 

df = n - 2 

 

where n is the number of pairs of scores (or the number of subjects, the sample size). 
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(b) Hypotheses for r 

 

Non-directional  

 

H1: ρ ≠ 0.00  

H0: ρ = 0.00 

 

Directional (one-tail tests): 

 

(a) Lower-tail (r is negative) 

 

H1: ρ < 0.00 

H0: ρ = 0.00  

 

(b) Upper-tail (r is positive) 

 

H1: ρ > 0.00 

H0: ρ = 0.00  

 

(c) Statistical Significance Level and Decision Rules for t-values 

 

The statistical significance level, alpha (α), is usually set at the conventional .10, .05, or .01 level. Critical values 

one uses for testing the correlation are the same t-values used above for the one sample t-test, or critical correlation 

values. 

 

Decision rules  

 

The decision rules for the test of the correlation follow: 

 

(a) Two-tailed tests 

 

If t ≤  -tcrit or t ≥  tcrit, then reject H0; otherwise, fail to reject H0 

 

or, alternatively 

 

If |t calculated| ≥ |t critical| then reject H0; otherwise, fail to reject H0 

 

(b) One-tailed test (upper-tailed, a hypothesized positive r) 

 

If t ≥ tcrit, then reject H0; otherwise, fail to reject H0 
 

(c) One-tailed test (lower-tailed, a hypothesized negative r) 

 

If t ≤ - tcrit, then reject H0; otherwise, fail to reject H0 

 

Note that tcrit symbolizes the critical t-value. 

 

(d) An Example with t-values 

 

Is there a relationship between the number of hours spent studying and performance on a statistics test? Surveying 

17 students in a statistics class, the correlation found between hours studied and test grade was r = .42. Test this 

correlation at the .01 level of significance to determine whether this sample of students comes from a population 

with ρ = 0 (i.e., no linear relationship between the variables). 
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t =
21

2

r

nr

−

−
=

242.1

21742.

−

−
=

1764.1

21742.

−

−
=

908.

627.1
= 1.792 

 

A two-tailed test with α = .01 and df = 17 - 2 = 15, has a critical value of ± 2.947.  

 

Decision rule: If |1.792| ≥ |2.947| reject Ho, otherwise fail to reject Ho 

 

Since 1.792 is less than 2.947 one would fail to reject Ho. 

 

 (e) Second Example with t-values 

 

Test whether there is sufficient evidence to reject Ho: ρ = 0.00 for the relationship between academic self-efficacy 

and test anxiety. For a sample (n = 197) of college students, the correlation obtained is r = -.52. Set the probability 

of a Type 1 error to .01.  

 

t =
21

2

r

nr

−

−
=

2)52.(1

219752.

−−
−−

=
)2704(.1

19552.

−
−

=
8542.0

2614.7−
= 50.8−  

  

With α = .01 and df = 197 - 2 = 195, the critical t-ratio would be about tcrit ≈ ±2.61. 

 

Decision rule: If |8.50| ≥ |2.61| reject Ho 

 

Since -8.50 is greater than 2.61 in absolute value the null will be rejected and one would conclude there is evidence 

of negative association between academic self-efficacy and test anxiety.  

 

(f) Critical r values, rcrit 

 

Note that for statistical tests of correlation coefficients, there is an easier procedure than calculating t-ratios from 

correlation coefficients. Once you have: 

 

(1) identified the correct H0 and H1,    

(2) set the significance level (α), 

(3) calculated the correlation,  

(4) and calculated the df, 

(5) use table of critical correlation values (rcrit) for r – see linked table on course web page under the notes for 

correlation, 

(6) apply the appropriate decision rule. 

 

As practice, find the critical r value for the following (assume non-directional alternatives for each): 

 

• r = -.33, n = 17, α = .05 

• r = .17, n = 165, α = .05 

• r = -.83, n = 10, α = .01 

• r =.47, n = 55, α = .01 

• r = .21, n = 86, α = .10 
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Decision rules using rcrit 

 

(a) Two-tailed tests 

 

If r ≤  -rcrit or r ≥  rcrit, then reject H0; otherwise, fail to reject H0 

 

or, alternatively, 

 

If |r calculated| ≥ |r critical| then reject H0; otherwise, fail to reject H0 

 

(b) One-tailed test (upper-tailed, a hypothesized positive r) 

 

If r ≥  rcrit, then reject H0; otherwise, fail to reject H0 
 

(c) One-tailed test (lower-tailed, a hypothesized negative r) 

 

If r ≤  - rcrit, then reject H0; otherwise, fail to reject H0 

 

Recall the two examples presented above: 

 

Example 1:  Hours studying and statistics test scores 

 

• r = .42 

• alpha = .01 

• Ho: ρ = 0.00 

• n = 17 

 

Find the critical r and apply the decision rule.  

 

Since n = 17 the df = n -2 so df = 15, therefore rcritical = ± 0.606 

 

Decision Rule: If |.42| ≥ |.606| reject Ho otherwise fail to reject Ho   

 

Since the obtained r of .42 is less than the critical r of .606 one would fail to reject Ho.  

 

Example 2:  Academic self-efficacy and test anxiety 

 

• r = -.52 

• alpha = .01 

• Ho: ρ = 0.00 

• n = 197 

 

Find the critical r and apply the decision rule.  

 

Since n = 197 the df = n -2 so df = 195, therefore rcritical = ± 0.208 (use df = 150 since table does not provide df = 

195).  

 

Decision Rule: If |-.52| ≥ |.208| reject Ho    

 

Since the absolute value of r is .52 and since .52 is larger than .208 (the critical r), one would reject Ho.  
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(g) Hypothesis Testing with p-values  

 

If using statistical software to perform hypothesis testing, one simply compares the obtained p-value for the 

correlation, r, against α to determine statistical significance. Note that most software reports, by default, p-values 

for two-tailed tests. The decision rule is: 

 

If p ≤  αααα, then reject H0; otherwise, fail to reject H0 

 

Example 1:  Hours studying and statistics test scores 

 

• r = .42 

• alpha = .01 

• Ho: ρ = 0.00 

• n = 17 

 

For r = .42 and n = 17 is the corresponding p = 0.093. 

 

Decision Rule: If .093 ≤ .01 reject Ho otherwise fail to reject Ho   

 

Since the p is larger than α, one would fail to reject Ho.  

 

Example 2:  Academic self-efficacy and test anxiety 

 

• r = -.52 

• alpha = .01 

• Ho: ρ = 0.00 

• n = 197 

 

The p-value for r = -.52 and n = 197 is less than .0001.  

 

Decision Rule: If .0001 ≤ .01 reject Ho     

 

Since p is less than α one would reject Ho.  

 

(h) Exercises 

  

(1) A researcher finds the following correlation between GPA and SAT scores: r =  .56, n =  19. Test for the 

statistical significance of this correlation with α = .01 for Ho: ρ = 0.00. Use both the critical t and critical r methods 

for testing the correlation. 

 

(2) A researcher finds a correlation of r = .139 between academic self-efficacy and academic performance. Is this 

correlation statistically different from zero? (Note: n =  30, α = .05, and use a two-tailed test.) 

 

(3) What is the smallest sample size is needed in (2) to reject Ho? 

 

7. Correlation Matrices (and SPSS worked example) 

 

Often researchers calculate correlation coefficients among several variables. A convenient method for displaying 

these correlations is via a correlation matrix. Below are the correlations among IQ, SAT, GRE, and GPA. Usually 

such tables include a footnote such as this: * p < .05. The asterisk denotes that a particular correlation is statistically 

different from 0.00 at the .05 level. If the asterisk is not next to a particular correlation, that means the null 

hypothesis was not rejected for that correlation. The dashed lines, ---, denote perfect correlations (r = 1.00). The 

correlation between a variable and itself is always equal to 1.00.  
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 IQ SAT GRE GPA 

IQ ---    

SAT .75* ---   

GRE .81* .82* ---  

GPA .45* .36 .42 --- 

* p < .05  

Which correlations are statistically significant? 

 

Example: College GPA, Pretest, and Posttest 

 

Data were collected from a number of students at GSU for a classroom experiment. Students reported their current 

GPA, completed a pretest to measure initial knowledge of the content, experienced an instructional treatment for 

several weeks, and then completed a posttest of content knowledge. Below are scores from a sample of 13 students 

who completed the study.  

 

Produce a correlation matrix of these variables using software such as SPSS.  

 

Table 9: Pre-test, Posttest, and GPA Scores 

GPA Pretest Posttest 

2.8 21 80 

3.4 55 89 

2.2 25 60 

3.6 42 91 

2.9 54 82 

3.2 38 79 

2.6 50 88 

2.4 41 50 

2.7 54 79 

3.2 44 79 

 

8. APA Style Presentation of Results 

 

(a) Table of Correlations – The table below provides an example correlation matrix of results. The data represent 

Ed.D. students reported levels of anxiety and efficacy toward doctoral study, their graduate GPA, and sex. 

 

Table 10: Correlations and Descriptive Statistics for Anxiety and Efficacy toward Doctoral Study, Graduate 

GPA, and Sex of Student 

 1 2 3 4 

1. Doctoral Anxiety ---    

2. Doctoral Efficacy -.43* ---   

3. Graduate GPA -.24* .31* ---  

4. Sex -.11 .19* -.02 --- 

M 3.20 4.12 3.92 0.40 

SD 1.12 1.31 0.24 0.51 

Scale Min/Max Values 1 to 5 1 to 5 0 to 4 0, 1 

Cronbach’s α .83 .76 --- --- 

Note. Sex coded Male = 1, Female = 0; n = 235. 

* p < .05. 
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(b) Interpretation of Results – For inferential statistical tests, one should provide discussion of inferential findings 

(was null hypothesis rejected; are results statistically significant), and follow this with interpretation of results. The 

focus of this study was to determine whether anxiety and efficacy toward doctoral study are related, and whether 

any sex differences for doctoral students are present for anxiety and efficacy. 

 

Statistical analysis reveals that efficacy toward doctoral study was negatively and statistically related, at the 

.05 level of significance, to students’ reported level of anxiety toward doctoral study, and positively related 

with students’ sex. There was not a statistically significant relationship between student sex and doctoral study 

anxiety. These results indicate that students’ who have higher levels of anxiety about doctoral study also tend 

to demonstrate lower levels of efficacy toward doctoral work. The positive correlation between sex and 

efficacy must be interpreted within the context of the coding scheme adopted for the variable sex where 1 = 

males and 0 = females. Since the correlation is positive, this means that males hold higher average efficacy 

scores than do females. Lastly, there is no evidence in this sample that anxiety toward doctoral study differs 

between males and females; both sexes appear to display similar levels of anxiety when thinking about 

doctoral work.  

 

9. Proportional Reduction in Error (PRE); Predictable Variance; Variance Explained 

 

(a) Interpretation of r 

 

Recall that the coefficient r indicates direction of linear association and, to a lesser extent, strength of association; 

the closer the value r to + 1.00 (or -1.00), the stronger the linear relationship, while the closer to 0.00 the weaker the 

linear relationship. 

 

 (b) Interpretation of r
2
   

 

The correlation squared – the coefficient of determination (r
2
) – represents the: 

 

• proportional reduction in error in predicting Y;  

• proportion of predictable variance accounted for in Y given X; 

• proportion of variance overlap between two variables; or the 

• extent of co-variation in percentage terms. 

 

Simply put, r
2
 is a measure of the amount of variability, in proportions, that overlaps between two variables, and 

can be illustrated graphically as denoted below.   

 

Figure 12: Venn Diagram Showing Variation Overlap between Variables X and Y  
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The coefficient of determination, r
2
, is a measure of the strength of the relationship between two variables; the 

larger r
2
, the stronger the relationship. The value r

2
  ranges from 0.00 to 1.00; the closer to 1.00, the stronger the 

relationship. 

 

Viewing r
2
 as the Proportional Reduction in Error (PRE) is perhaps easiest to understand. Assume that one is trying 

to predict freshmen college GPA. Suppose one knows, from previous years, that freshmen GPA ranges from 2.00 to 

4.00 for students in a given university, with a mean of 3.00. Without know anything else about students, one’s best 

prediction for the likely values of GPA for a group of freshmen is the mean of 3.00, with a range of 2.00 to 4.00. If 

the mean for a given group of students is 2.50, then our predicted mean of 3.00 is in error. If the mean for another 

group of students is 3.1, then our predicted mean of 3.00 is again in error. Is there any way to reduce the amount of 

error one has in making predictions for GPA? The answer is yes if one has access to additional information about 

each student.  

 

Now suppose additional information about each student is available, such as their high school class rank and their 

rank based upon SAT scores. By using this information, it is possible to reduce errors in prediction. While 

correlation coefficients are not designed to provide prediction equations (regression is used for that purpose), 

squared correlation coefficients can provide information about the extent to which prediction error will be 

minimized. The squared correlation coefficient, r
2
, indicates the proportional reduction in error that will result for 

knowing additional information, such as SAT rank.  

 

(c) r
2
, Proportional Reduction in Error Illustrated 

 

Below is a correlation matrix showing college GPA correlates .116 with High School Class Rank (HS_rank) and 

.697 with a student’s SAT score rank (SAT_rank). Since both correlations are positive, they indicate that as rank, 

either HS or SAT, increases, GPA also increases.  

 
. correlate GPA HS_rank SAT_rank, means 

    Variable |         Mean    Std. Dev.          Min          Max 

-------------+---------------------------------------------------- 

         GPA |          3.1           .3     2.162229     4.016737 

     HS_rank |           50     28.93181            0          100 

    SAT_rank |           50     28.93181            0          100 

 

             |      GPA  HS_rank SAT_rank 

-------------+--------------------------- 

         GPA |   1.0000 

     HS_rank |   0.1166   1.0000 

    SAT_rank |   0.6970   0.2829   1.0000 

 

If one created a regression equation using highs school class rank, the error in predicting college GPA would be 

reduced by r
2
 = .116

2
 = .013 or 1.3%. If, however, one were to use SAT score rank, the PRE (proportional reduction 

in error) would be r
2
 = .697

2
 = .486 or 48.6%, a big improvement over using just HS rank. 

 

This reduction in error is loosely illustrated in Figures 8 and 9. Figure 8 shows the relationship between SAT rank 

and college GPA, while Figure 9 shows the scatterplot for HS class rank and college GPA. Both scatterplots have a 

gray band behind the scatter. This gray band represents a interval of predicted values. Note that for students with an 

SAT Rank of 0.00, the gray band ranges from a GPA of 2.20 to about 3.30, while for students with a HS Class 

Rank equal to 0.00, the range of predicted GPA falls between about 2.25 to 3.80. Note that the band of predicted 

values is tighter, narrower, for SAT rank than for HS class rank thus reflecting the better prediction capabilities for 

SAT rank.  
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Figure 13: Scatterplot with College GPA 

with SAT Rank 

 

 Figure 14: Scatterplot with College GPA 

with HS Class Rank 

 

 

 

 
 

***Ignore marks below*** 

. use "C:\Documents\GSU\COURSES\EDUR 8131\Data and Graphs\GPA HS_rank SAT_rank.dta", clear 

. twoway  (lfitci GPA SAT_rank, stdf level(99)) (scatter GPA SAT_rank) (lfit GPA SAT_rank, clpattern(solid) clwidth(thick)), ytitle(College 

GPA) xtitle(SAT Rank) legend(off) ytick(2(.1)4)  scheme(s2mono) xtick(0(10)100) 

. twoway  (lfitci GPA HS_rank, stdf level(99)) (scatter GPA HS_rank) (lfit GPA HS_rank, clpattern(solid) clwidth(thick)), ytitle(College GPA) 

xtitle(HS Class Rank) legend(off) ytick(2(.1)4)  scheme(s2mono) xtick(0(10)100) 

***Ignore marks above*** 

 

 

10. Alternative Correlations 

 

Pearson's r assumes both variables are continuous with an interval or ratio scale of measurement. Alternative 

measures of association exist that do not make this assumption. 

 

• Spearman Rho (Rank Order Correlation), rranks: appropriate for two ordinal variables which are converted to 

ranks; once variables are converted to ranks, simply apply the Pearson's r formula to the ranks to obtain rranks; if 

untied ranks exist (i.e., no ties exist), then the following formula will simplify calculation of rranks: 

 

rranks =
)1(

6
1

2

2

−
− ∑

nn

D
  

 

where D refers to the difference between the ranks on the two variables. 

 

• Phi Coefficient, φ or rφ: appropriate for two dichotomous variables (a nominal variable with only two 

categories is referred to as dichotomous); one may apply Pearson's r to the two dichotomous variables to obtain 

rφ, although simplified formulas exist. 

• Point-Biserial Coefficient, rpb: this correlation is appropriate when one variable is dichotomous and the other is 

continuous with either an interval or ratio scale of measurement; as with the other two, rpb is simply Pearson's r, 

although a simplified formula exists.  

• Gamma: Like Pearson’s r, gamma ranges from -1.0 to 1.0 and a value of 0.00 suggests no association. Gamma 

us well suited for measures of association among ordinal variables, but can also be used for two dichotomous 

variables.  

• Somer’s D: Like gamma, Somer’s D is also suited for ordinal variables and produces an index that ranges from 

-1.0 to 1.0. . 
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Table 11: Summary of Correlation Coefficients 

Correlation Coefficient Variable X Variable Y 

Pearson's r r interval, ratio (some 

ordinal appropriate too) 

interval, ratio (some 

ordinal appropriate too) 

Spearman's Rank rranks ordinal (ranked) ordinal (ranked) 

gamma γ ordinal (ranked) ordinal (ranked) 

Somer’s D D ordinal (ranked) ordinal (ranked) 

Phi rφ dichotomous dichotomous 

Point-Biserial rpb dichotomous interval, ratio 

Note: ranked refers to ordering the original data from highest to lowest and then assigning ordinal ranks, e.g., 1, 2, 

3, etc. 

 

 

11. Exercises 

 

See Course Index, Exercises for additional worked examples.  

 

 

12. Partitioned Variance for SAT 

 

IGNORE THIS SECTION – NOT COVERED IN EDUR 8131 

 

 

r
2
 = .7912 = .626 

 

total variance in y = variance predicted + variance not predicted 

2
SATs  = (r

2
)( 2

SATs )  + (1 - r
2
)( 2

SATs ) 

2932.142 = (.626)(2932.142)  + (1 - .626)(2932.142) 

2932.142 = 1835.521 + 1096.621 

 

Proportion explained       = 0.626 (in percent, 62.6%) 

Proportion not explained   = 0.374 (in percent, 37.4%) 

Variance explained          = 1835.521 

Variance not explained     = 1096.621 
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