
Multiple Linear Regression 
 
1. Purpose—To Model Dependent Variables 
 
Purpose of multiple and simple regression is the same, to model a DV using one or more predictors (IVs) 
and perhaps also to obtain a prediction equation.  
 
2. Regression Equations 
 
Primary difference in equations for multiple regression compared with simple regression is addition of 
IVs (Xs) which also leads to slight difference in literal interpretation (focus now on partial effects 
interpretation).  
 

Population 
 

Multiple regression (one DV and multiple IVs) 
 
Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + … + βpXip + εi               
 
where 
 
Yi = represents individual scores on the DV per each ith person 
β0 = the intercept of the equation (predicted value of Y’ when all IVs = 0.00) 
βp = the slope relating the pth IV (Xi) to the DV (Yi) 
Xip = represents individual scores on the pth IV per each ith person 
εi = residual or error term; defined as the deviation between observed Y and predicted Y’  
 
Note that each symbol has same meaning as in simple regression except that now several IVs (the Xs) 
exist which means there are also several slopes, one for each IV. 
 

Prediction equation 
 
Y’ = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + … + βpXip              
 
Where Y’ is the predicted value of the DV in the population given the partial effects of each X. Note 
absence of ε; since means are predicted based upon the equation, individual score deviations from the 
prediction (Y-Y’) are not included.  
 

Sample 
 

Multiple regression (one DV and one IV) 
 
Yi = b0 + b1Xi1 + b2Xi2 + b3Xi3 + b4Xi4 + … + bpXip + ei               
 

Prediction equation 
 
Y’ = b0 + b1Xi1 + b2Xi2 + b3Xi3 + b4Xi4 + … + bpXip               
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Literal interpretation 
 
Literal interpretation of regression coefficients b0, b1, and b2 (these interpretations also apply to 
population parameters shown above): 
 
b0 = predicted value of Y, Y’, when each of the predicts, the Xs, all equal 0   
b1 = expected change in predicted Y’ for a one unit change in X1 controlling for other Xs (holding 

other predictors at a constant value, such as their respective mean scores). 
b2 = expected change in predicted Y’ for a one unit change in X2 controlling for other Xs (holding 

other predictors at a constant value, such as their respective mean scores). 
bp = expected change in Y’ for a one unit change in Xp, holding constant the other predictors. 
 
 
3. Controlling Effects; Partial Effects 
 
Multiple regression offers a much more realistic modeling opportunity compared with simple regression. 
Usually outcomes of interest, DVs, are functions of multiple causes and predictors simultaneously, and 
multiple regression can help show and model those factors.  
 
 Partial effects illustrated 
 

Graphical display 
 
To illustrate the partial effects of multiple regression, consider the following fictional data that includes 
mathematics scores, student height, student sex (0 = female, 1 = male), and a second set of mathematics 
scores.  
 
Table 1: Fictional Mathematics Scores, Height, Sex, and Other Mathematic Scores 

Math 
Scores Height Sex Other 

Math  Math 
Scores Height Sex Other 

Math 
9 11 1 .  3 5 0 . 
8 10 1 .  2 4 0 . 
9 10 1 10  3 4 0 3 

10 10 1 11  4 4 0 2 
7 9 1 .  1 3 0 . 
8 9 1 12  2 3 0 4 
9 9 1 .  3 3 0 3 

10 9 1 11  4 3 0 . 
11 9 1 .  5 3 0 . 
8 8 1 .  2 2 0 5 
9 8 1 12  3 2 0 4 

10 8 1 13  4 2 0 . 
9 7 1 .  3 1 0 . 

Note: For sex, 0 = female, 1 = male 
 
These data are plotted in Figure 1 below. Examine Figure 1 and determine whether a relationship exists 
between mathematics scores and height. 
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Figure 1 

 
 
Figure 2 below shows how regression will model these data if sex is not controlled in the regression 
model. Note the positive relation between height and mathematics scores. 
 
Figure 2 

 
 
 
Figure 3 below identifies scores by sex and shows the regression equation between height and 
mathematics scores computed separately by sex. Note the slope of each line. If these data are modeled by 
multiple regression, then a more realistic analysis should arise.  
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Figure 3 

 
 
 

Regression analysis 
 
Model these data using regression first without sex as a second variable, then model again with sex. How 
does adding sex into the regression equation change the slope estimates? 
 
Model 1 (simple regression with only height as predictor):  
 
Yi = b0 + b1Heighti1 + ei               
 
What is the literal interpretation for these coefficients? 
What is the R2 value for this model? 
 
Model 2 (regression with both height and sex as predictors): 
 
Yi = b0 + b1Heighti1 + b2Sexi2 + ei               
 
What is the literal interpretation for these coefficients? 
What is the R2 value for this model? How did the R2 value change from Model 1? 
 
 
 Partial effects illustrated, again 
 

Graphical display 
 
To show partial effects again, consider sex, height, and “other mathematics” scores provided in Table 1 
above. These data are plotted in Figure 4 below. Examine Figure 4 and determine whether a relationship 
exists between mathematics scores and height. 
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Figure 4 

 
 
Figure 5 shows how regression will model these data if sex is not controlled in the regression model. Note 
again the positive relation between height and mathematics scores. 
 
Figure 5 

 
 
Figure 6 below shows how these data should be modeled if modeled correctly in regression.  
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Figure 6 

 
 
 

Regression Analysis 
 
Model these data using regression first without sex as a second variable, then model again with sex. How 
does adding sex into the regression equation change the slope estimates? 
 
Model 1 (simple regression with only height as predictor):  
 
Yi = b0 + b1Heighti1 + ei               
 
What is the literal interpretation for these coefficients? 
What is the R2 value for this model? 
 
Model 2 (regression with both height and sex as predictors): 
 
Yi = b0 + b1Heighti1 + b2Sexi2 + ei               
 
What is the literal interpretation for these coefficients? 
What is the R2 value for this model? How did the R2 value change from Model 1? 
 
 
3. Estimation of the Regression Equation and Residuals 
 
Estimation for multiple regression relies on ordinary least squares, same as with simple regression. In 
addition, residuals are calculated in the same way—obtain predicted value of Y’ and e = Y–Y’. 
 
Note: Illustrate residuals with mathematics scores and height data. 
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4. Literal Interpretation of Coefficients 
 

Example 1: Mathematics scores, height, and sex data 
 
Using the first set of mathematics scores from Table 1, the following is obtained through regression: 
 
Y’ = b0 + b1Heighti1 + b2Sexi2             
 
Y’ = b0 + b1Heighti1 + b2Sexi2
 = 3.00 + 0.00(Height) + 6.00(Sex) 
 
What is literal interpretation of b0, b1, and b2?   
 
b0 = the predicted mean mathematics score for students with height = 0.00 and sex = 0.00 is 3.00 

(i.e., females with height of 0.00 are predicted to have mathematics score of 3.00) 
b1 = mathematics scores are expected to increase by 0.00 for a 1 point increase in height controlling 

for sex 
b2 = mathematics scores are expected to increase by 6.00 for a 1 point increase in sex controlling for 

height 
 
Recall that to “control for” means to hold at a constant value the other predictors in the model.  
 

Example 2: Ice cream sales by price, income, and temperature 
 
The data listed below were reported by Kadiyala, Koteswara Rao (1970). “Testing for the Independence 
of Regression Disturbances.” Econometrics, 38(1), 97—117. 
 
The data consists of ice cream sales over a 30 week period taken over several years from March 1950 to 
July 1953. The variables include the following: 
 
Sales (consumption) = Measured in pints per capita. 
Price = Price of ice cream in dollars. 
Income = Weekly family income in dollars. 
Temperature = Mean temperature in degrees Fahrenheit.  
 
The data are located here in an Excel, Mintab, and SPSS file: 
 
Excel: http://www.bwgriffin.com/gsu/courses/edur8131/data/ice-cream.xls 
SPSS: http://www.bwgriffin.com/gsu/courses/edur8131/data/ice-cream.sav 
Minitab: http://www.bwgriffin.com/gsu/courses/edur8131/data/ice-cream2.MTW 
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Using these ice cream sales data, estimate the following model: 
 
Sales’ = b0 + b1Pricei1 + b2Incomei2 + b3Temperaturei3       
 
Address the following: 
 
(a) Provide literal interpretation for each of the four regression coefficients.  
(b) If temperature drops by 10 degrees, what is the expected change in sales? 
(c) If ice cream prices increase by 25 cents, what is the expected change in sales? 
(d) If family income drops $10 per week, what is the expected change in sales? 
(e) What is the predicted ice cream sales if temperature = 70, family income = 70, and price = 28 cents? 
 

Example 3: House prices in Albuquerque 1993 
 
The data are a random sample of records of re-sales of homes from Feb 15 to Apr 30, 1993 from 
the files maintained by the Albuquerque Board of Realtors. 
 
Price = Prices in thousands of dollars. 
Square Feet = Size of house in square feet living space. 
Age = Age of house in years. 
Features = Number out of 11 features (dishwasher, refrigerator, microwave, disposer, 

washer, intercom, skylight(s), compactor, dryer, handicap fit, cable TV 
access) 

Tax = Annual taxes in dollars 
 
The data are located here in an Excel, Mintab, and SPSS file: 
 
Excel: http://www.bwgriffin.com/gsu/courses/edur8131/data/house-prices.xls 
SPSS: http://www.bwgriffin.com/gsu/courses/edur8131/data/house-prices.sav 
Minitab: http://www.bwgriffin.com/gsu/courses/edur8131/data/house-prices.MTW 
 
Using these housing data, estimate the following model: 
 
Price’ = b0 + b1Square Feeti1 + b2Agei2 + b3Featuresi3       
 
Address the following: 
 
(a) Provide literal interpretation for each of the four regression coefficients.  
(b) If house size drops by 100, what is the expected change in price? 
(c) If age of house increases by 25 years, what is the expected change in price? 
(d) If number of features increases by 2, what is the expected change in price? 
(e) What is the predicted sales price for a house if square feet = 3000, age = 25, and features = 6? 
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5. Model Fit 
 
As with simple regression, model fit (how well model reproduces observed Y) is assess via the following 
indices:  
 
Multiple R = Pearson product moment correlation, r, between Y and Y’, denoted simply as R. 

Sometimes this is referenced as the Coefficient of Multiple Correlation. 
Multiple R2 = Value of R squared, sometimes referenced as the coefficient of determination. R2 

represents a measure known as the proportional reduction in error (PRE) that results 
from the model when attempting to predict Y.  

Adjusted R2 = Similar in interpretation to R2 above, but calculated differently. Adjusted R2 is 
proportional reduction in error variance of Y, i.e., adj. R2 = [var(Y)-var(e)] / var(Y) 
where var(e) is variance of residuals calculated as n – df1 – 1 (not n – 1 as is typical of 
variance formula for sample). Another formula: adj. R2 = 1 – [MSE/var(Y)] 

 
What are model fit statistics for the three data examples listed above? 
 
6. ΔR2 = Part Correlation—Increment in R2 due to an IV 
 
To be added. 
 
7. Inference in Regression 
 
Two types of inferential tests are common in regression, a test of overall model fit and tests of regression 
coefficients.  
 

Overall Model Fit 
 

Null 
H0: R2 = 0 (tests whether model R2 differs from 0.00; if R2 = 0.00, then no reduction in prediction error) 
 
or equivalently 
 
H0: βp = 0.00 (states that slopes of predictors all equal 0.00, so none of the Xs have association with Y) 
 

Alternative  
H1: R2 ≠ 0; or 
H0: at least one βp is not 0.00 
 

Meaning 
 
H0: R2 = 0: The regression model does not predict Y; model does not reduce error in prediction. 
 
H1: R2 ≠ 0: Regression does predict some variability in Y; model does reduce some error in prediction of 
Y. Some aspect of the model used, i.e., the IVs selected, is statistically related to Y (or at least predicts 
Y). 

Test of H0: R2 = 0 
 
Same as with simple regression, use overall F test (and corresponding p-value) to assess significance of 
complete model in predicting Y. 
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Coefficient Inference 
 

Null and Alternative 
 
H0: βp = 0.00  
 
The null states that relation between X1 and Y is zero controlling for other IV; no relation between X1 and 
Y controlling for other IVs.  
 
H1: βp =/  0.00. 
 

Testing H0: β1 = 0.00 with t-test and p-value 
 
As with simple regression, H0: βp = 0.00 may be tested with a t-ratio: 
 
t = b1 / SEb1  
 
Degrees of freedom (df) for this t-test is defined a n – k – 1 where k is the number of predictors in the 
regression equation.  
 
The decision rule for t-test: 
 
If t ≤ –tcrit or t ≥ tcrit reject H0, otherwise fail to reject H0. 
 
The decision rule for p-values: 
 
If p ≤ α reject reject H0, otherwise fail to reject H0. 
 
All of the above is the same for simple regression. 
 

Confidence Interval for b1: Inference and Estimation 
 
Formula for CI about regression coefficient: 
 
b1 ± t(α/2,df)SEb1
 
where  
 
t is the critical t value, and SEb1 is the standard error of b1. 
 
Interpretation: one may be 95% confidence that the true population coefficient may be as large as [upper 
bound] or as small as [lower bound].  
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8. Reporting Regression Results 
 
Like with simple regression, two tables are often used, one for descriptive information and one for 
regression results. Using the ice cream data, below are sample tables and written results.  
 
Table 2: Descriptive Statistics and Correlations for Ice Cream Sales Data 

  Correlations  
Variable 1 2 3 4 

1. Sales ---    
2. Price -.26 ---   
3. Income .05 -.11 ---  
4. Temperature .78* -.11 -.33 --- 
Mean 0.36 0.28 84.60 49.10 
SD 0.07 0.01 6.25 16.42 
Note: n = 30 
* p < .05 
 
Table 3: Regression of Ice Cream Sales on Price, Income, and Temperature 

Variable b se b 95% CI t 
Price -1.04 0.83 -2.76. 0.67 -1.25 

Income 0.003 0.001 0.001, 0.006 2.82* 
Temperature 0.003 0.001 0.003, 0.004 7.76* 

Intercept 0.20 0.27 -0.36, 0.75 0.73 
Note: R2 = .72, adj. R2 = .69, F = 22.18*, df = 3,26; n = 30 
*p < .05. 
 

Results of the regression analysis show that both temperature and weekly family income are 
positively and statistically associated with ice cream sales. Ice cream price is not a statistically 
significant predictor of sales in this analysis. The greater the family income, and the greater the 
temperature, the higher will be predicted sales of ice cream.  

 
9. Exercises 
 
(1) A researcher wishes to know whether number of hours studied at home is related to general 
achievement amongst high school students. Student ability should be controlled to assess better the effects 
of studying. 
 

High School  
GPA 

IQ Time Spent Studying 
Per Week (in Hours) 

3.33 117 3 
1.79 90 5 
2.21 101 12 
3.54 121 9 
2.89 105 11 
2.54 110 1 
2.66 112 0 
1.10 85 3 
3.67 128 2 
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(2) Does SAT adequately predict college success, once rank is controlled?  
Freshmen Collegiate GPA HS Rank* SAT Scores 

3.33 52 1000 
1.79 233 750 
2.21 150 890 
3.54 43 1100 
2.89 95 900 
2.54 43 860 
2.66 120 1010 
1.10 280 640 
3.67 33 1240 

*Out of 300 students. 
 
(3) A teacher is convinced that frequency of testing within her classroom increases student achievement. 
She runs an experiment for several years in her algebra class. The frequency in which she presents tests to 
the class varies across quarters. For example, one quarter students are tested only once during the term, 
while in another quarter students are tested once every week. Is there evidence that testing frequency is 
related to average achievement? 

Quarter Testing Frequency 
During Quarter 

Average IQ 
in Class 

Overall Class Ach. on 
Final Exam 

Fall   1991 1 105 85.5 
Winter 1992 2 108 86.5 
Spring 1992 3 108 88.9 
Summer 1992 4 109 89.1 
Fall   1992 5 107 87.2 
Winter 1993 6 110 90.5 
Spring 1993 7 108 89.8 
Summer 1993 8 114 92.5 
Fall   1994 9 110 89.3 
Winter 1994 10 112 90.1 
 
(4) An administrator wishes to know whether a relationship exists between the number of tardies or 
absences a student records during the year and that student's end-of-year achievement as measured by 
GPA. The administrator randomly selects 12 students and collects the appropriate data. The principal also 
has standardized ITBS test scores for each student. 

Student GPA ITBS Tardies/Absences 
Bill 3.33 65 2 
Bob 1.79 40 10 
Stewart 2.21 50 5 
Linda 3.54 70 6 
Lisa 2.89 49 3 
Ann 2.54 55 4 
Fred 2.66 58 6 
Carter 1.10 37 12 
Bill 3.10 55 3 
Sue 2.10 45 8 
Loser 2.31 51 6 
Kathy 3.67 63 2 
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Exercises Answers 
 
(1) A researcher wishes to know whether number of hours studied at home is related to general 
achievement amongst high school students. Student ability should be controlled to assess better the effects 
of studying. 
 
Table 1  
Descriptive Statistics and Correlations among GPA, Time Spent Studying, and IQ 

Variable  Correlations  
 GPA Time IQ 

GPA ---   
Time .033 ---  
IQ .963* -.149 --- 
Mean 2.637 5.11 107.67 
SD .844 4.46 14.053 
n = 9 
* p < .05 
 
Table 2  
Regression of GPA on Time Spent Studying and IQ 

Variable b se 95%CI t 
Time .034 .015 -.005, .07 2.16 

IQ .059 .005 .047, .072 11.83* 
Intercept -3.93 .56 -5.32, -2.56 -7.00* 

Note. R2 = .96, adj. R2 = .95,  F2,6 = 70.09, n = 9.  
*p < .05. 
 
Regression results show that time spent studying is not statistically related to GPA once students’ IQ 
scores are taken into account. The relationship between IQ and GPA is statistically significant and 
positive. The greater one’s IQ, the higher, on average, is one’s GPA. Time spent studying does not appear 
to predict one’s GPA.  
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(2) Does SAT adequately predict college success, once rank is controlled?  
 
Table 1  
Descriptive Statistics and Correlations among GPA, HS Rank, and SAT 

Variable  Correlations  
 GPA Rank SAT 

GPA ---   
Rank -.93* ---  
SAT .94* -.83* --- 
Mean 2.64 116.56 932.22 
SD 0.84 89.33 180.33 
n = 9 
*p < .05. 
 
 
Table 2  
Regression of GPA on Rank and SAT 

Variable b se 95%CI t 
Rank -.005 .002 -.008, -.001 -3.03* 
SAT .002 .001 .001, .004 3.28* 

Intercept .864 .862 -1.24, 2.97 1.00 
Note. R2 = .95, adj. R2 = .93, F2,6 = 57.43*, n = 9.  
*p < .05. 
 
Both HS rank and SAT scores are statistically related to student GPA. Results show that as one’s rank 
increases, predicted GPA declines; however, as SAT scores increase, GPA tends to increase.  
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(3) A teacher is convinced that frequency of testing within her classroom increases student achievement. 
She runs an experiment for several years in her algebra class. The frequency in which she presents tests to 
the class varies across quarters. For example, one quarter students are tested only once during the term, 
while in another quarter students are tested once every week. Is there evidence that testing frequency is 
related to average achievement? 
 
Table 1  
Descriptive Statistics and Correlations between Testing Frequency, Achievement, and IQ 

Variable  Correlations  
 Final Testing  IQ 

Final ---   
Testing .75* ---  
IQ .89* .77* --- 
Mean 88.94 5.50 109.10 
SD 2.06 3.03 2.56 
n = 10 
* p < .05 
 
Table 2  
Regression of Achievement on Testing Frequency and IQ 

Variable b se 95%CI t 
Testing .12 .18 -0.31, 0.54 0.66 

IQ .61 .21 0.10, 1.11 2.86* 
Intercept 22.06 22.45 -31.02, 75.14 0.98 

Note. R2 = .80, adj. R2 = .74, F2,7 = 13.94*, n = 10.  
*p < .05. 
 
Correlations show that testing frequency and IQ are both related to student achievement, but regression 
results show that once IQ is taken into account, testing frequency no longer predicts student achievement. 
Students with higher IQs tend to obtain higher achievement scores; testing frequency does not seem to 
relate to achievement.  
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(4) An administrator wishes to know whether a relationship exists between the number of tardies or 
absences a student records during the year and that student's end-of-year achievement as measured by 
GPA. The administrator randomly selects 12 students and collects the appropriate data. The principal also 
has standardized ITBS test scores for each student. 
 
Table 1  
Descriptive Statistics and Correlations among GPA, ITBS, and Absences 

Variable  Correlations  
 GPA ITBS Absences 

GPA ---   
ITBS .92* ---  
Absences -.85* -.72* --- 
Mean 2.60 53.17 5.58 
SD .76 9.93 3.15 
n = 12 
*p < .05. 
 
Table 2  
Regression of GPA on Absences and ITBS scores 

Variable b se 95%CI t 
ITBS .048 .01 .03, .07 4.62* 

Absences -.096 .03 -.17, -.02 -2.92* 
Intercept .58 .70 -1.00, 2.17 0.83 

Note. R2 = .92, adj. R2 = .90, F2,9 = 50.47*, n = 12.  
*p < .05. 
 
Regression results show that both ITBS scores and number of absences are statistically related to student 
GPA. As the number of absences increase, GPA tends to decline; as ITBS scores increase, GPA tends to 
increase.  
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