Pearson Correlation with Excel

1. Description of r

The Pearson product moment correlation coefficient, r, is a measure of linear relation between two quantitative variables. The values of r range from -1.00 (a perfect negative relationship) to 1.00 (a perfect positive relationship). A value of 0.00 indicates no linear relationship, but a non-linear relation could exist when r = 0.00. One should always inspect a scatterplot of variables to visually determine whether a non-linear, or curvilinear, relation exists, or whether outliers or other odd results exist when calculating Pearson r.

The Pearson r is a descriptive statistic, but one can also perform hypothesis tests with Pearson r. Why conduct hypothesis tests? We know samples have variability and don't always match the population from which they were drawn. It is possible, for example, for a sample to indicate a relation exists between two variables, or for means to differ between two groups, when neither a relation nor a mean difference exists in the population. Hypothesis tests help us decide whether our sample results appear to be due to random sample variation or whether the results appear to be reflective of real population relations or differences.

With Pearson r the null hypothesis of no relation is tested. For example, a correlation of r = .23 may be observed between test grades and hours studied in a sample of 5th grade students. The null states that test grades and hours studied are unrelated. Performing a hypothesis test will help us decide whether the correlation of .23 is due to random variation caused by this sample or whether it represents a relation between test grades and hours studied in the population of 5th grade students. The hypothesis test helps us decide whether the observed correlation is likely random or real.

2. Free Excel for GSU Students

Calculating Pearson r is not difficult, but formulas for Pearson r won't be covered in this course. Instead, we will rely on Excel to calculate Pearson r. If you don't have Excel, note that current Georgia Southern students may freely download Microsoft Office 365. The link is provided in Folio in the Technology Resources section (see Figure 1).

3. Calculating Pearson r with Excel

The Correlation spreadsheet appears as shown in Figure 2. The spreadsheet has been protected to prevent users from accidentally erasing formulas, but if you wish to edit the sheet, it can be unprotected by clicking on the Unprotect icon under Review. There is no password.

1	А	В	С		D	E	F	G	н		I I	J	K
1	Enter Data Bel	ow (up to 300)	Both Y and X	Note: T	'his sheet	is protected s	o foi	rmulas are	not acci	dently	erased	d. Unprot	ect the
2	Variable 1	Variable 2	present?	9	heet to a	ccess cells oth	er th	an the da	ta entry o	cells.; t	here is	s no pass	word.
3	98	92	1										
4	87	87	1	Pearson	r =	0.935829							
5	88	88	1	n (samp	le size) =	8.000000							
6	77	83	1	t test fo	rr=	6.503824							
7	72	78	1	p-value	for r =	0.000629							
8	73	73	1	p-value	for r =	0.000629							
9	62	62	1										
10	63	57	1			S	cat	terplot					
11			0	100									
12			0	90							•		
13			0	80						0			
14			0	70									
15			0	ě.									
16			0	03 O									
17			0	Variable 2									
18			0	eiue 40									
19			0	- 50									
20			0	20									
21			0	10									
22			0	0									
23			0	(D	20 40		60	80		100	120	
24			0				Vi	ariable 1 Sco	res				
25			0										
26			0	Note: T	vo p-valu	e functions use	ed ir	i case you	r version	of Exc	el not i	recognize	e one.

Figure 2: Excel Sheet to Calculate Pearson r

One can enter data in the two green columns labeled Variable 1 and Variable 2 (see Figure 3).

0		
	А	В
1	Enter Data Bel	ow (up to 300)
2	Variable 1	Variable 2
3	98	92
4	87	87
5	88	88
6	77	83
7	72	78
8	73	73
9	62	62

Figure 3: Data Entry in Green Columns

Results are presented to the right of the green columns (see Figure 4).

Figure 4: Pearson r, sample size, t-test, and p-value Results

Pearson r =	0.935829
n (sample size) =	8.000000
t test for r =	6.503824
p-value for r =	0.000629
p-value for r =	0.000629
p-value for r =	0.000629

A scatterplot is also provided to allow visualization of the relation between the two variables.

4. Example 1: State Mean SAT Mathematics and Mean Teacher Salary

Is there a relation between the mean SAT mathematics score by state and mean teacher salary by state? Some may hypothesize states that pay their teachers more will have higher SAT scores, so a positive relation would be expected.

Figure 5 shows the data as entered in the Excel spreadsheet. The data are shown in two columns to save space.

4 47.951 489 30 34.830 5 32.175 496 31 34.72 6 28.934 523 32 46.08 7 41.078 485 32 46.08 8 34.571 518 33 28.493 9 50.045 477 34 47.61 10 39.076 468 35 30.79 11 32.588 469 36 26.32 12 32.291 448 37 36.80 13 38.518 482 38 28.17 14 29.783 511 39 38.55 15 39.431 560 40 44.51 16 36.785 467 41 40.72 18 34.652 557 43 25.99 19 32.257 522 44 32.47 20 26.461 535 45 31.22 21 31.972 469 45 31.22 22 40.661	1		
4 47.951 489 30.322 4 47.951 489 30 34.836 5 32.175 496 31 34.72 6 28.934 523 32 46.087 7 41.078 485 33 28.493 9 50.045 477 34 47.612 10 39.076 468 35 30.793 11 32.588 469 36 26.327 12 32.291 448 37 36.802 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20<	2	Variable 1	Variable 2
4 47.951 489 30 34.836 5 32.175 496 31 34.72 6 28.934 523 31 34.72 7 41.078 485 32 46.087 8 34.571 518 33 28.493 9 50.045 477 34 47.612 10 39.076 468 35 30.793 11 32.588 469 36 26.327 12 32.291 448 37 36.802 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21	3	31.144	538
5 32.175 496 31 34.72 6 28.934 523 31 34.72 7 41.078 485 32 46.087 8 34.571 518 32 46.087 9 50.045 477 34 47.612 10 39.076 468 35 30.793 11 32.588 469 36 26.327 12 32.291 448 37 36.802 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 <td< td=""><td>4</td><td>47.951</td><td>489</td></td<>	4	47.951	489
6 28.934 523 32 46.087 7 41.078 485 32 46.087 8 34.571 518 33 28.493 9 50.045 477 34 47.612 10 39.076 468 35 30.793 11 32.588 469 36 26.327 12 32.291 448 37 36.802 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 45 31.223 22 40.661 479 46 29.082 22	5	32.175	496
7 41.078 485 8 34.571 518 33 28.493 9 50.045 477 34 47.612 10 39.076 468 35 30.793 11 32.588 469 36 26.327 12 32.291 448 37 36.802 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 45 31.223 22 40.661 479 46 29.082 23 40.795 477 35.406 48 33.987 24 41.895	6	28.934	523
8 34.571 518 33 28.493 9 50.045 477 34 47.612 10 39.076 468 35 30.793 11 32.588 469 36 26.327 12 32.291 448 37 36.802 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 47 35.406 23 40.795 477 47 35.406	7	41.078	485
9 50.045 477 10 39.076 468 35 30.793 11 32.588 469 36 26.327 12 32.291 448 37 36.802 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 46 29.082 23 40.795 477 47 35.406 23 40.795 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540	8		518
11 32.588 469 36 26.327 12 32.291 448 37 36.802 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 47 35.406 23 40.795 477 47 35.406 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 <td>9</td> <td>50.045</td> <td>477</td>	9	50.045	477
11 32.360 403 12 32.291 448 37 36.802 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 47 35.406 23 40.795 477 47 35.406 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 51 37.746 27 31.189 550 51 37.746	10	39.076	468
13 38.512 110 13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 45 31.223 22 40.661 479 46 29.082 22 40.661 479 47 35.406 23 40.795 477 47 35.406 24 41.895 549 49 36.151 25 35.948 579 50 31.944 27 31.189 550 51 37.746	11	32.588	469
13 38.518 482 38 28.172 14 29.783 511 39 38.555 15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 46 29.082 23 40.795 477 35.406 48 33.987 24 41.895 549 49 36.151 50 31.944 25 35.948 579 50 31.944 50 31.944 27 31.189 550 51 37.746	12	32.291	448
15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 46 29.082 23 40.795 477 47 35.406 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746	13		482
15 39.431 560 40 44.51 16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 46 29.082 23 40.795 477 35.406 48 33.987 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746	14	29.783	511
16 36.785 467 41 40.729 17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 47 35.406 23 40.795 477 47 35.406 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746	15		560
17 31.511 583 42 30.279 18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 47 35.406 23 40.795 477 48 33.987 24 41.895 549 48 33.987 25 35.948 579 50 31.944 26 26.818 540 50 31.944 27 31.189 550 51 37.746	16	36.785	467
18 34.652 557 43 25.994 19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 47 35.406 23 40.795 477 48 33.987 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746	17	31.511	583
19 32.257 522 44 32.477 20 26.461 535 45 31.223 21 31.972 469 46 29.082 22 40.661 479 47 35.406 23 40.795 477 48 33.987 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746	18	34.652	557
20 26.461 535 41 31.21 21 31.972 469 45 31.223 22 40.661 479 46 29.082 23 40.795 477 47 35.406 24 41.895 549 49 36.151 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746	19		522
21 31.972 469 46 29.082 22 40.661 479 46 29.082 23 40.795 477 47 35.406 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746	20	26.461	535
22 40.661 479 46 29.082 23 40.795 477 47 35.406 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746	21	31.972	469
23 40.795 477 47 35.406 24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746	22		479
24 41.895 549 48 33.987 25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746			477
25 35.948 579 49 36.151 26 26.818 540 50 31.944 27 31.189 550 51 37.746			
26 26.818 540 50 31.944 27 31.189 550 51 37.746			
27 31.189 550 51 37.746			
	28	28.785	536

Figure 5: Teacher Salary and Math SAT Scores for Each State

1 Enter Data Below (up to 300)

Variable 1 is mean teacher salary in thousands of dollars and variable 2 is mean SAT math scores. For the first state listed, teacher salary is 31.144 which means \$31,144, and Math SAT is 538.

Results are reported in Figure 6. The correlation is r = -.40. This negative correlation indicates that as teacher salary increases, Math SAT scores tend to decline.

Figure 6: Correlation Results for Teacher Salary and Math SAT

Pearson r =	-0.401313
n (sample size) =	50
t test for r =	-3.04
p-value for r =	0.003872
p-value for r =	0.003872

Figure 7 shows the scatterplot for these data, and a negative trend is discernable.

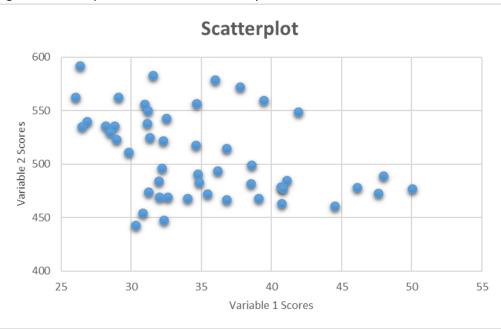


Figure 7: Scatterplot of Mean Teacher Salary and Mean Math SAT

The null hypothesis for these variables follows:

Null: There is no relation between state level mean teacher salary and mean math SAT scores.

With hypothesis testing we wish to know whether the sample data provide enough evidence to determine whether a relation is possible in the population. The test for Pearson r = -.40 is performed by a t-test and the value of the calculated t, shown in Figure 6, is t = -3.04.

To help decide whether the data are consistent, or inconsistent, with the stated null hypothesis, we use the p-value which is derived from the t-test. The reported p-value, shown in Figure 6, is 0.003. What does this mean?

p-value = .003: The probability, through random chance, of obtaining a correlation r this large or larger (in absolute value) if the null hypothesis of no relationship is true in the population.

What does this mean? To calculate this p-value we must assume that the null is true for the population, so we assume there is no relation between math SAT scores and teacher salary. If the null is true, then what are the chances of taking a random sample of 50 scores from a given year and finding a t-ratio of -3.04 or larger in absolute value (i.e., $t \ge 3.04$ or $t \le -3.04$); the p-value tells us this chance, or probability, and it is .003. If we were to repeatedly sample from this population, the chance of getting a sample Pearson correlation like we observed, or a more extreme Pearson correlation, is about .003 x 100 = 0.03%. The key here is the assumption that the null hypothesis – no correlation between math SAT scores and teacher salary – is true in the population. We don't know if it is true, but we do know that if it were true, we could expect to see a correlation this large or larger only about 0.03% of the time. So, if the null is true, then the correlation observed (r = -.40) is a rare event.

When collecting sample data, like the data in this example, random variability is expected from sample to sample. When random variation occurs, it may create random relationships among variables. The point of conducting hypothesis tests and examining p-values is to help us decide whether the relationship we observed is likely due to random chance, or due to something real. The fact that we observed a correlation of r = -.40 in a sample does not mean it exists in the

population; the hypothesis test helps us decide whether that correlation could be due to random variation or due to a real relationship in the population.

In hypothesis testing small p-values lead researchers to reject the null and conclude that a relationship exists; if the p-value is large, researchers won't reject the null hypothesis and will conclude that no relationship exists. Since this p-value is 0.003, which is very small, it appears that the sample data are inconsistent with the stated null, so our sample data seem to indicate there is a relationship between salary and SAT scores.

Recall the discussion of hypothesis testing errors. Two error probabilities were presented, alpha (α) and beta (β). Alpha is the probability of a Type 1 error (rejecting the null and claiming there is a relation when in fact there is no relation in the population), and beta is the probability of a Type 2 error (failing to reject a false null and claiming there is no relation when in fact there is a relation in the population).

Researchers use a decision rule when deciding to reject or not reject the null hypothesis:

Decision Rule: If p-value $\leq \alpha$ reject the null; if p-value $> \alpha$ do not reject the null

A common alpha level used for hypothesis testing decisions is .05 which means there is a 5% chance of making a Type 1 error in hypothesis testing.

If alpha = .05, would the null hypothesis of no relation between mean teacher salary and mean math SAT scores be rejected? The p-value reported above for these data was .003, so complete the decision rule:

Decision Rule: If .003 ≤ .05 reject the null; if .003 > .05 do not reject the null

Since .003 is less than .05, the null is rejected and we claim there is a "statistically significant" correlation between mean teacher salary and mean math SAT scores across the states. Interpretation: A correlation of r = -.40 indicates a negative association was found. This suggest that the higher teacher salaries, the lower math SAT scores.

If you are interested in replicating this analysis, the raw data can be downloaded from this link:

http://www.bwgriffin.com/gsu/courses/edur7130/statistics/State-Salary-and-SAT-Scores-1994-1995.xls

Source of data: http://www.stat.ucla.edu/labs/pdflabs/sat.pdf

A key variable was omitted from this analysis – the percent of students in each state who took the SAT. If we consider the percentage of students in each state who took the SAT, the relation between teacher salary and mean SAT scores changes – it is no longer negative. Why might the variable percent of students who take the SAT change the nature of the relation between salary and SAT?

5. Example 2: Doctoral Student Efficacy and Anxiety toward the Dissertation Process

Doctoral students were asked to respond to a questionnaire designed to assess two constructs: anxiety toward the dissertation process and efficacy toward the dissertation process. The items represent an attempt to measure students' anxiety (concern, fear, nervousness) and efficacy (confidence, certainty) about undertaking and completing the process of developing and defending a dissertation. The questionnaire is presented in Display 1. The even-numbered items measure anxiety and the odd-numbered items measure efficacy.

Display 1: Dissertation Process Questionnaire

The purpose of the questionnaire is to ascertain doctoral students' thoughts about the dissertation process. Your honest responses will help provide a better understanding of doctoral students' experience with this process. In the context of this questionnaire, dissertation process means the entire process students experience to construct and defend the dissertation. This includes, for example, developing the research idea, developing and defending the prospectus, collecting and analyzing data, writing the dissertation, and defending the dissertation before of a committee.

The following 10 statements refer to the dissertation process that you will soon experience. There are no right or wrong answers, so please answer as accurately as possible. Use the scale below to respond to each statement. If you think the statement is very true of you, circle 7; if the statement is not at all true of you, circle 1. If the statement is more or less true of you, find the number between 1 and 7 that best describes you.

		not at true of					v	ery true of me
1.	I believe I will do well on the dissertation.	1	2	3	4	5	6	7
2.	I feel uneasy or uncomfortable with the dissertation process as a whole.	1	2	3	4	5	6	7
3.	I am confident that I can address even the hardest aspects of the dissertation process.	1	2	3	4	5	6	7
4.	Thinking about the upcoming dissertation process mak me feel anxious.	es 1	2	3	4	5	6	7
5.	The process of writing and defending the dissertation r be difficult or hard, but I think I will be successful anyw		2	3	4	5	6	7
6.	I am worried about how well I will do during the dissertation defense.	1	2	3	4	5	6	7
7.	I know that I have learned the literature and theories the will be necessary to report in the dissertation.	hat 1	2	3	4	5	6	7
8.	I feel my heart beating faster as I start to think about th dissertation.	ne 1	2	3	4	5	6	7
9.	I am sure that I will be able to answer some of the mor challenging or difficult questions posed by the dissertation committee.	e 1	2	3	4	5	6	7
10	Thinking about the consequences of failing some component of the dissertation process makes me uptig	1 sht.	2	3	4	5	6	7

For each respondent the mean of responses to the five anxiety items was used to form a composite score for anxiety, and the mean for the efficacy items was used to form a composite score for efficacy. The mean responses are reported in Figure 8; Variable 1 represents the efficacy scores and Variable 2 the anxiety scores.

Figure 8: Variable 1 = Efficacy, Variable 2 = Anxiety

Enter Data Below (up to 300)					
Variable 1	Variable 2				
5.600	3.800				
4.600	4.800				
5.000	5.800				
5.600	6.000				
5.800	4.000				
6.200	3.400				
5.200	2.400				
4.000	6.800				
6.400	5.800				
6.200	3.800				
6.200	2.600				
6.000	4.200				
5.600	4.400				
7.000	1.000				
5.000	4.600				
7.000	1.000				
5.200	4.400				
5.400	5.200				
5.600	4.600				

Prior research has shown that anxiety and efficacy tend to correlate negatively, so a similar correlation was expected for these data. Results are reported in Figure 9.

Figure 9: Results for Dissertation Process Anxiety and Efficacy

-0.693124
19
-3.96
0.001001
0.001001

The correlation is r = -.69 with a sample size of 19 respondents. The p-value for this correlation is .001. Since this value is less than alpha of .05, i.e.,

Decision Rule: If .001 ≤ .05 reject the null; if .001 > .05 do not reject the null

we can reject the null hypothesis (null: there is no relation between dissertation process anxiety and efficacy) and conclude, based upon this sample of 19, that there appears to be a negative relation between anxiety and efficacy for the dissertation process.

A scatterplot of dissertation process efficacy and anxiety is presented in Figure 10. The plot shows a negative trend which is consistent with the negative Pearson r value.

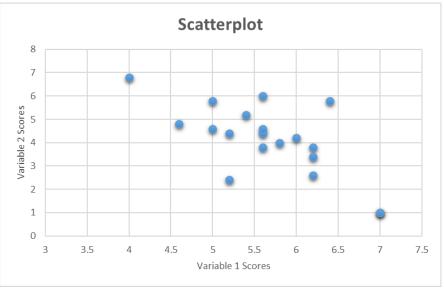


Figure 10: Scatterplot of Dissertation Process Efficacy (Variable 1) and Anxiety (Variable 2)

6. Review of Hypothesis Testing with Correlations with Excel

(a) Enter data in green columns

(b) Examine Pearson r value and scatterplot to assess nature of relationship

(c) If p-value is less than alpha (e.g., .05), reject the null and claim relationship was identified; if the p-value is greater than .05 do not reject the null and state that the sample data indicate no relationship was identified

(d) Interpret the results – explain what the r and scatterplot indicate are occurring with the relationship between variable 1 and variable 2